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ABSTRACT

In this paper, we study acoustic modeling for speech recogni-
tion using mixtures of exponential models with linear and quadratic
features tied across all context dependent states. These models are
one version of the SPAM models introduced in [1]. They gen-
eralize diagonal covariance, MLLT, EMLLT, and full covariance
models. Reduction of the dimension of the acoustic vectors us-
ing LDA/HDA projections corresponds to a special case of reduc-
ing the exponential model feature space. We see, in one speech
recognition task, that SPAM models on an LDA projected space
of varying dimensions achieve a significant fraction of the WER
improvement in going from MLLT to full covariance modeling,
while maintaining the low computational cost of the MLLT mod-
els. Further, the feature precomputation cost can be minimized
using the hybrid feature technique of [2]; and the number of Gaus-
sians one needs to compute can be greatly reducing using hierar-
chical clustering of the Gaussians (with fixed feature space). Fi-
nally, we show that reducing the quadratic and linear feature spaces
separately produces models with better accuracy, but comparable
computational complexity, to LDA/HDA based models.

1. INTRODUCTION

In this paper we study acoustic models for speech recognition which
are mixtures of exponential models for acoustic vectors z € R?
which use features tied across all states s of a context dependent
Hidden Markov model. We look at systems with 4 linear features
(6 < d) and D quadratic features (D < d(d + 1)/2). These
models were introduced in [1] under the acronym SPAM models
because they are Gaussian mixture models with a subspace con-
straint placed on the model precisions (inverse covariance matri-
ces) and means; although the precise condition on the means was
left ambiguous in [1]. Reference [1] focused on the case of uncon-
strained means, in which the only constraint was that the precision
matrices be a linear combination of matrices { S }£—; which are
shared across Gaussians.

The SPAM models generalize the previously introduced EM-
LLT models [3, 4], in which the Sy are required to be rank one
matrices. The well known maximum likelihood linear transform
(MLLT) [5] or semi-tied covariance [6] models are the special case
of EMLLT models when D = d.

Using the techniques developed in section 3 here and in [1, 2,
3,4, 7], itis now possible to perform, at least to a good approxima-
tion, maximum likelihood training of these models for reasonably
large scale systems, in both the completely general case and in a
number of interesting subcases.

Our goal is to use these models as a tool to improve word
error rates at reasonable computational cost. The time required for
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evaluating the acoustic model is
time = precompute + nGaussEvaled * perGaussian . (1)

Here precompute is the time required to precompute all of the
linear and quadratic features; nGaussEwvaled is the actual num-
ber of Gaussians evaluated; and perGauss is the amount of time
required for each Gaussian evaluation, which, up to constants, is
just D + 4. If we were to evaluate all of the Gaussians in a
system with very many Gaussians, the term nGaussEvaled *
perGaussian would very much dominate over the precompu-
tation time. However, by clustering the Gaussians (preserving
the fixed feature space), as discussed in 5, we are able to reduce
nGaussEvaled to the point where the precomputation time be-
comes a significant fraction of the overall computation.

The feature precomputation time can be reduced by either of
two techniques. First, as discussed in section 4, one can reduce
the effective dimensions of the samples x by generalizing the het-
eroscedastic discriminant analysis technique of [7]. Second, one
can use the hybrid technique of [2] which restricts the matrices
{Sk} to be linear combinations of K rank one matrices, K <<
d(d+1)/2.

2. DEFINITION OF MODEL

The SPAM models have the form:

pls) = Y mwop(zlg) , @)
9€G(s)
1/2
p(x|g) = det (%) 6_%(CB—HQ)TP9($—P9) , (3)

where G(s) is the set of Gaussians for state s, and the precisions
and means are written as

D
Py = So+» XSk, (4)
k=1
s
by = Pypg=lo+Yy ¢gla - )
a=1

The d x d symmetric matrices {Sy} and the vectors {l,} in R?
are tied across all Gaussians. In the following, we will drop the
affine shifts (i.e. set Sp and Iy to zero) when they don’t need to be
emphasized.

The constraints (4) and (5), correspond to restricting to the
following linear and quadratic features,

f"(z) € R, fir@) = L, ©)
fquad(x) c RD, ;czuad(x) — .’KT Sk z .
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Note that f'" = Lz, where L = [l;...Is]". The exponential
model version of (3) is:

pzlg) = (2m) 2399 0
a(zlg) = C(Ag, ¢g) — )\gT Foved 4 2¢§‘ Fling)

3. PARAMETER ESTIMATION

In this section we consider training all of the model parameters,
O = {)\;, dg,{Sk}, L}, so as to maximize, or at least approxi-
mately maximize, the total log likelihood of a set of labeled train-
ing vectors (x4, st)l. This can be accomplished, according to the
EM algorithm by iteratively updating the parameters. Given a cur-
rent set of parameter 6, the E-step of the EM algorithm gives the
function Q(©, ©) that we need to maximize over ©. Letting N (s)
be the number of samples associated with state s and s(g) be the
HMM state for Gaussian g and solving for the priors in the usual
way, we have, as in [1, 2],

Q(0,0) = D ngG(Py;%y), (10)
g9
ng = N(s(g))mg, (11)
1
Ty = o 7:(9), (12)
’ N(s(g)) 2) '
- ,0) = M, 13
7:(9) v:(g,0©) o(zels(0) ©) (13)
G(P;X) = log(det(P))— Tr(XP), and (14)
Y, = z~]g + (g — frg)(pg — ﬂg)T- (15)

Here ji; and 3, are the mean and covariance matrix of the set
of samples labeled by s(g), with sample z; given a weight of
~:(g)/ng. Letting E4(F(z)) denote the expectation value of the
function F'(z) for this sample distribution, we have

iy = Ey(x) (16)
Sy = EBy(aa")— fighy - (¢

For the case of unconstrained means, fast algorithms for calcu-
lating the \’s and approximately calculating the { S } are given in
[1], and exact calculation of the { S} is performed in [2]. For the
general case considered here, section 3.1 describes how to jointly
optimize for the tied matrix L defining the constrained linear space
and the untied parameters {¢4 } defining the point 6, in the linear
space; and section 3.2 gives an algorithm to optimize for the untied
parameters {\g, g }.

3.1. Optimization of theLinear Parameters

The part of the @ function which depends on L and {¢g} for fixed
precision matrices { P, } (i.e. fixed {Si} and {A\,}) is:

QUL Ads}) = =D mllfy =Y dilall}s  (18)
b, = Pty , (19)

1The labeling corresponds to a fixed alignment of some speech corpus.
More generally, we could of course weight the training vectors using the
forward-backward algorithm for HMM’s.

where, for 3 a symmetric matrix,

]l = u" Zu, foru € R%. (20)

To maximize Q we start by letting L(® be the solution of the
total least squares problem obtained when the P, ! are all replaced
by their average X:

19 = £7Y%eig, (Zn921/2ég§§21/2) , (2D

g

where eig,(Y) stands for the eigenvector corresponding to the
a’th largest eigenvalue of the symmetric matrix Y.

Then we simply alternate between optimizing the quadratic in
{#4} obtained from @ by fixing L and the quadratic in L obtained
from @ by fixing {¢g }. The linear equations for the updates of ¢
and L are, respectively,

(LP; L"), Lé, (22)
Z Tig ¢g¢gTLPg_ to= Z NgPgllg - (23)
g g

3.2. Optimization of the Untied Parameters

The function G(P,;X,) above depends implicitly on the untied
parameters Ay and ¢g4, the tied parameters {Sy} and L, and the
E-step means fi'" = Eq(f""(x)) and f2"*? = E (f1*(x))
of the linear and quadratic features. In this section, we consider
optimizing G with respect to the untied parameters. Dropping the

subscript g, we may write

G\ ¢) = G(P;X)=E(q(x))
C(A\ ¢ {Sk}, L) — AT fouod 29" f1'" (24)

G(, ¢) is a concave function of ¢ and A. It may be optimized
by alternately maximizing with respect to ¢ and A until conver-
gence.

Maximization with respect to ¢ for fixed A gives:

¢ _ (LP—ILT)—lf_lin . (25)

Note that in the case of unconstrained means (where we take L to
be the identity), f“" = ji and ¢ = P}, so that the model mean
u = P¢ equals the data mean ji.

For the case when the means are unconstrained, an efficient
technique was given in [1] to maximize G with respect to A for
fixed . We use a similar technique here to optimize for A when ¢
is fixed. Namely, we apply the conjugate gradient algorithm with
fast line searches for the maximum of the function G(¢, ) along
the line through the value of X found at the end of the last conjugate
gradient iteration in the direction of the conjugate gradient search
direction . The function to optimize when doing the line search
is:

f@®) = GA+tn,é)— G(\ ¢) + (aconstant) (26)
= logdet(P, Py ') — ¢ (L P7' LT)p —tB (27)
B = g fre (28)
P = > (A +1tn)Sk=Po+1tR (29)
k
R = ansk . (30)
k
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Let {w,} be the eigenvalues and {y;} be an orthonormal ba-
sis of eigenvectors of P, /> RP, */?. The vector v, = P, /%y,
is called a generalized elgenvector of the pair (R, Po) because
Ruv, = wp Pov,. Using

i Up vg

Pl = il 31
k —1+tw, ’ (31)

it is straight forward to verify that

d
—tB+ Y log(l +tw,) —

p=1
ap = vy Lo . (33)

Since L and ¢ are fixed, the a,, can be precomputed at the start of
the line search. The line search is restricted to the values of ¢ for
which P; is positive definite, i.e. we restrict to the interval of ¢ for
which 1 + tw, is positive for all p.

a
1+tw,

f#)

(32)

4. SPAM-HDA MODELS
Following [7], we define a SPAM-HDA model to be one in which
R is broken into two complementary subspaces:

1 Tl .
xl—)[;z]ZTm, T:[T2 ] Tiisd; x d

and the Gaussians are tied along one of the subspaces:
1 11
Tugz[Zg], Pg_T[P 0 ]T

0 P22

If Pg11 are unrestricted, the model is called a full covariance
HDA model, or simply an HDA model. If they are diagonal, it is
called a diagonal HDA model. If the P, " are allowed to be full
covariance, but are required to be independent of g, the authors
of [7] show that the maximum likelihood projection matrix agrees
with the well known Linear Discriminant analysis (LDA) matrix.
The more general SPAM-HDA model allows for an arbitrary sub-
space restriction on Pg“. The feature precomputation cost for the
models is dy *d+ D *d, * (d, +1)/2, which can be much smaller
than the generic precomputation cost of D x d * (d + 1)/2.

5. CLUSTERING OF GAUSSIANS

By using Gaussian clustering techniques [8], it is possible to re-
duce the number of Gaussian one needs to evaluate significantly
below the total number of Gaussians in an acoustic model. To
apply this idea to a SPAM model, we will find a collection of clus-
ter models p(z|c), ¢ = 1,...,nClusters (which are exponential
models using the same tied features as the SPAM model) and an
assignment c¢(g) of Gaussians g of the SPAM model to clusters.
We choose this clustering to maximize

> meEq(a(xle(9)) = > neG(Xe, be; fo) , where  (34)
g c

ne = Z e (35)
gie(g)=c

foo= Y LR, @), (@36)
gie(g)=c " °

where Eg(F(z)) is now the expectation of F'(x) under the model
p(z|g), and the function G is given by (24).

Similarly to K-means clustering, equation (36) is optimized
by alternately choosing the best clusters for each Gaussian and re-
computing the cluster models (i.e. optimizing G(A, ¢c; f) using
the technique of section 3.2).

To do acoustic modeling at time ¢, we first evaluate all the
cluster distributions p(x:|c). We then use those results to make a
judicious choice of nActive Gaussians g from the original model
for which to evaluate p(z|g). Simple threshold values are used in
place of the contribution of the unevaluated Gaussians.

6. EXPERIMENTAL RESULTS

We performed experiments using the same test data, training data
with fixed Viterbi alignment (obtained using a baseline diagonal
covariance model), and Viterbi decoder as was used in [1, 2, 3,
4]. The test set consists of 73743 words from utterances in small
vocabulary grammar based tasks (addresses, digits, command and
control) recorded in a car under idling, city driving, and highway
driving conditions. The acoustic models had 89 phonemes and a
total of 10253 Gaussians distributed across 680 context dependent
states using BIC based on a diagonal covariance system.

The samples we used consisted of 117 dimensional vectors
obtained by splicing nine consecutive thirteen dimensional cep-
stral vectors. As a first step, we created LDA projection matrices
based on the within class and between class full covariance statis-
tics of the samples for each state. For 8 different values of the
dimension d; ranging from 13 to 117, we constructed matrices
LDA(d,) which project from 117 to di dimensions and we built
full covariance models, F'C(d1), based on the projected vectors.

In order to verify that the projections used for the models
FC(d1) where good, we also used the Gaussian level statistics of
the models FC(117) and FC(52) to construct LDA and HDA pro-
jection matrices (as well as a successful variant of HDA presented
in [9]). The models FC(d1) gave WERs within 3% relative of the
best performing of all of the full covariance system (with the same
projected dimension), with the sole exception that FC(13) had an
error rate of 4.04%, whereas the system built on vectors output by
the composition of LDA(52) and the 13 x 52 LDA matrix con-
structed based on the statistics of FC(52) had a WER of 3.90% (a
3.5% relative improvement).

Next, we built the systems we will refer to as MLLT(d1),
which are MLLT systems for vectors produced by multiplication
with LDA(d1). (As a check on these MLLT systems, we observed
that they did as well or better than the MLLT system based on
features built using the diagonal version of HDA.) We also built
the systems SPAM(d = d1, D = d1,§ = d1), which are SPAM
systems with unconstrained means in dimension d, with precision
matrices constrained to a D = d; dimensional subspace spanned
by matrices {Sy } obtained using the quadratic approximation (to
the total likelihood function) technique of [1]. Figure 1 shows
that the SPAM models achieve a significant fraction of the to-
tal improvement possible in going from MLLT to full covariance
(while maintaining the same per Gaussian computational cost as
the MLLT system).

Next, again using the techniques of [2], we built the mod-
els SPAM(d = 52,D = di,§ = 52), which are SPAM mod-
els for vectors produced by LDA(52) which have unconstrained
means and have D = 13, 20, 39. Using these models to pro-
vide E-step statistics, we computed a § = d; by d = 52 matrix
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@ -6 - MLLT(d1)
Q. 9~ SPAM(d=d1, D=d13=d1)
4sr i -8 FC(d1) I

word error rate in percentages

2‘0 4‘0 60 B‘O 100 120
dimension d1 of LDA projected data samples

Fig. 1. WER as function of dimension showing SPAM model
achieves significant fraction of improvement from MLLT to full
covariance model. SPAM model has same per Gaussian compute
time as MLLT.

L by the technique of section 3.1. Fixing this L and the {Sx},
k =1,..,D = di, we performed the EM algorithm, with the
technique of section 3.2 for the M-step, to optimize {my, Ay, ¢4}
The models obtained are called SPAM(d = 52, D = d;,6 = d1).
Figure 2 show that the system SPAM(d = 52,D = di,§ =
dy) ties or outperforms (significantly when d; = 13) the sys-
tems SPAM(d = di,D = di1,6 = di) and (the even worse)
MLLT(d4). All of these system have equal per Gaussian compu-
tational cost.

We conclude with two experiments showing that the precom-
putation cost as well as the number of Gaussians that need to be
evaluated can be reduced.

Both Figure 1 and 2 show that SPAM(d = 39, D = 39,4 =
39) has error rate 2.14%. A comparable error rate of 2.13% is
obtained from a hybrid model trained by the techniques of [2]
to give a SPAM model with d = D = § = 39, but with the
S constrained to be linear combinations of K = 156 rank one
matrices. This comparable error rate was obtained by balanc-
ing the small degradation due to the constraint on the Sj with
the small improvements due to the fact that an affine So was in-
cluded and the Si were trained in a true maximum likelihood
fashion. The model reduces the feature precomputation cost from
Dd(d+1)/2 = 30000 to Kd+ Dk =~ 12000. Applying clustering
of Gaussians to this model with nClusers = 1024 and decoding
with nActive = 1000, as described in section 5, we found that the
error rate increased only slightly, to 2.19%. This is at a significant
savings from evaluating 10253 Gaussians to evaluating only 2024
Gaussians.

7. CONCLUSION

A SPAM model is just a state dependent mixture of exponential
models with linear and quadratic features shared across all Gaus-
sians. We have described how to train such models and have shown
that both the flexibility to constrain the quadratic features and the

e -@- MLLT(d1)
1N \ <~ SPAM(d=d1, D=d13=d1)
45r R —&— SPAM(d=52, D=d13=d1) ||

word error rate in percentages
w

10 15 20 25 30 35 40 45 50 55
dimension d1 of linear and quadratic feature space

Fig. 2. WER as function of linear and quadratic feature space di-
mension showing that SPAM features from 52 dimensional model
do better than SPAM features constrained to the LDA projected
subspace.

flexibility to constrain the linear features can lead to improved ac-
curacy at fixed computational cost per Gaussian. Furthermore, we
have seen that the total computational cost can be lowered singif-
icantly by choosing features that can be precomputed quickly and
by clustering the Gaussians (as exponential models with common
feature space) so that only a fraction of the Gaussians need to be
evaluated.
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