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ABSTRACT 

 
In this paper, some practical implementation issues on Partially 
Tied Covariance(PTC) modeling are discussed. First, from the 
view of model complexity and computational load, a brief com-
parison is made for some variants of PTC. From the analysis, 
two representatives, STC[1] and Ortho-STC[2] are compared in 
details in the rest of the paper. Second, based on these variants, 
two techniques are studied. One technique is joint optimization 
of both transformation and HMM parameters, which will exploit 
the potential of PTC. And the other technique is model selection 
by hierarchical tree via Bayesian Information Criterion(BIC), 
which will decide the number and structure of transformation 
classes thus to assure the generalization capacity. Experiment 
results showed that STC always outperforms Ortho-STC due to 
the effect of parameter tying and by the application of above two 
techniques the system performance can be much improved.  

1. INTRODUCTION 

Covariance modeling for multidimensional speech data is a stan-
dard problem in acoustic modeling of the automatic speech rec-
ognition(ASR) systems. Typically, mixture of diagonal Gaus-
sians are simply chosen to describe the acoustic features, with 
the underlying assumption that each element of the relatively 
high dimensional feature vector is independent. Since it is hard 
to find a single transform that de-correlates speech features of all 
states in a Hidden Markov Model(HMM) ASR system, the above 
assumption is always not true. The intra-frame correlations 
should be explicitly modeled, at least partly, to reinforce the 
system performance. 

Efficient solutions should not only provide robust parameter 
estimation, but also have low memory and computational time 
overhead. The two extremes are diagonal-covariance model and 
the full-covariance one. Recently a number of tradeoffs among 
computational, storage and training data sparseness have been 
suggested and widely used in many state-of-the-art speech and 
speaker recognition systems[1-11]: 

First category is the Partially Tied Covariance(PTC) model-
ing[1-8], a definition derived from[6]. They have in common 
that the full covariance(or its inverse) of each Gaussian compo-
nent can be factored into the form ADAT, where the state de-
pendent untied parameter D is diagonal and the state independent 
parameter A is a linear transform, which is shared over a set of 
Gaussian components. They are different in the constraints 
putted on A and/or D. 
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 The second one is Factor Analyzed(FA) covariance model-
ing [9, 10, 11], a kind of continuous-state linear Gaussian system 
modeling covariance structure of high dimensional static data 
using a small number of latent variables.  

In addition, some variants can also be found: covariance se-
lection[6] and model selection[7, 11]. The idea behind covari-
ance selection is that by using a data-driven sparse structure on 
the covariance inferred from thresholding of the sample inverse 
covariance matrix, the unnecessary parameters of a system can 
be eliminated. As to the model selection, model structure[11], 
the assignment of the transformations[7] can be optimized. 

Though there are some possible efficient algorithms for the 
likelihood computation involved in FA covariance models, the 
computational load is still much heavier than PTC models. So in 
this paper, we only concentrate on PTC and consider following 
problems: 
1) Some variants of PTC are compared from the view of model 

complexity and computational load, based on the comparison 
we further choose the unconstrained STC[1] and Common 
Principal Components(CPC)[13] based orthonormal con-
strained STC(Ortho-STC)[2] for detailed comparison. 

2) Two techniques are studied to optimize PTC, e.g., joint op-
timization of transformation and HMM parameters by multi-
ple EM iterations[2] and model selection procedure on the 
number and structure of semi-tied transformations based on 
the Bayesian Information Criterion(BIC)[11].  
The rest of the paper is organized as follows. In the 

following section, a brief review of some variants of PTC is 
described. In section 3, comparison and joint optimization of 
both transformation and HMM parameters for STC and Ortho-
STC are made in depth, followed in Section 4, a new model 
selection procedure is introduced. Given all above, experiment 
results are presented in section 5, and we conclude in section 6. 

2. COMPARISON OF SOME VARIANTS OF PTC 

PTC modeling originates from various matrix decomposition 
methods for symmetric positive definite covariance matrix(or its 
inverse), e.g., C=ADAT, where D is diagonal, matrix A can be of  
arbitrary form. According to the form of A, PTC can be catego-
rized into two classes: constrained and unconstrained. For the 
former, some constraints are putted on A to remain mathematical 
restriction whereas for the latter, A is of any form. 

2.1. Constrained PTC 

 Two variants are formerly used in speech recognition systems: 
Eigen-decomposition, named as State-Specific Rotation(SSR) in 
[3], and Cholesky-decomposition, named as Factored Sparse 
Inverse Covariance(FSIC) in [6]. In SSR, state dependent A is 
orthonormal and is composed by eigenvectors and D is made up 
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with real and positive eigenvalues. The feature space is rotated 
and all intra-frame correlations are removed. As in FSIC, A is a 
unit upper-triangular matrix that has ones along the diagonal and 
D is positive diagonal matrix. The matrix A describes intra-frame 
correlations, some elements can be forced to zeros by some co-
variance selection criterion. When A is tied across HMM states, 
the mathematical constraints can still be kept: SSR can be ex-
tended by Ortho-STC[2, 13], a CPC based simultaneous diago-
nalizing several weighted covariance algorithm, and FSIC can be 
extended by General EM algorithm as authors of [8] did. 

2.2. Unconstrained PTC 

There are no structural constraints putted on A. In addition to 
STC introduced in [1], some extensions have also emerged: 1) 
EMLLT[4] constrains the inverse covariance matrix of each 
Gaussian to be a linear combination of B rank one matrices. B is 
typically higher than the dimension of the feature d, if they are 
equal, the model moves back to global STC. 2) EMLLT model 
has been further extended to SPAM[5] by loosening rank one 
constraint for the basis subspace. 

2.3. Comparison of Complexity and Computational Load 

Covariance Models Number Of Parameters Computational Load
Diagonal M(2d + 1) O(2Md) 

Full M(d(d + 1)/2 + d + 1) O(M(d2 +d)) 
Ortho-STC M(2d + 1) + Rd2 O(2Md + Rd2) Cons- 

Trained FSIC M(2d + 1)+Rd(d - 1)/2 O(2Md + Rd2) 
STC M(2d + 1) + Rd2 O(2Md + Rd2) 

EMLLT M(B + d + 1) + Bd O(M(B + d) + Bd) 
Uncons- 
trained 

SPAM M(B + d + 1) + Bd (d + 1)/2 O(M(B + d) + Bd2) 

Table 1: Comparison among some variants of PTC from the 
view of model complexity and computational load. 
In table 1, let M be the total number of Gaussians of the system, 
which is typically on the order of 10,000, R denotes the number 
of transformation classes(also as semi-tied classes hereafter) and 
B, d are defined as those in section 2.2. From the table, it can be 
concluded that 1) all PTC models are compromises of reliable 
estimation of model parameters and computational cost between 
two extremes, e.g., diagonal and full covariance models; 2) both 
EMLLT and SPAM models are typically more computationally 
expensive than other PTC models.  

We also believe that 1) there is some subtle relation between 
constrained and unconstrained PTC, in the following section, we 
take Ortho-STC and STC into detailed consideration of compari-
son; 2) with appropriate complexity control of the number of the 
model parameters, a balance leading to the best performance can 
be reached, which will be concerned in section 4. 

3. JOINTLY OPTIMIZING OF TRANSFORMATION AND 
HMM PARAMETERS FOR ORTHO-STC AND STC 

The unconstrained linear transformations may suffer from being 
unable to properly reflect the nature of the acoustic parame-
ters[12], whereas when A is constrained to be orthonormal, it 
will lead to an explicit mathematical explanation as they are 
derived from the eigenvectors of the full covariance matrices. 
Moreover, with the orthonormal constraint, the Jacobian |A|-1 
equals to one, which means that the likelihood got in the original 
and the transformed spaces are directly comparable.  

Because of the hidden nature of the state/mixture occupancy 
in HMM, an iterative two-step algorithm, expectation maximiza-
tion(EM), can be used by maximizing the auxiliary function Q (1) 
with respect to HMM parameters and transformation: (P, A). 

Assuming )(τo to be the d dimension observation at timeτ , 
following auxiliary function must be optimized: 
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where for the mth ( )( r
Mm ∈ )Gaussian component of the rth semi-

tied class, the mixture weight, mean and diagonal covariance of 
the Gaussian component are denoted as mw , mµ and m

diagΣ respec-

tively, and )(τγ m is state/mixture occupancy probability at timeτ .  
For both STC and Ortho-STC, sum of the mixture weights 

belonging to a state is constrained to be one. Especially for Or-
tho-STC, following constraint should also be satisfied for or-
thonormal property of Ar: 

ITrr =⋅ AA  
where I is d by d identity matrix. 

According to EM algorithm, following procedure is summa-
rized for the joint optimization of (P, A): 

1) Initialization: find an initial estimate of },,{ m
diag

mmwP Σµ=  

and set Ar to be I; 
2) E-step: compute the state/mixture occupancy probability 

at timeτ : )),(|()( Pompm ττγ = ; 

3) M-step: First using current estimation rÂ (or an identity 
matrix) to maximize (1) with respect to model parameters by 
taking partial derivative with P̂ , we obtain: 
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Second, estimate semi-tied transform rÂ using current set P̂ : 
 For STC 

A row by row optimization algorithm is introduced in [1], for 
a particular ith row of rÂ , r

iâ : 
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where ci is ith row vector of the cofactors of rÂ , m
diagiσ̂ is element i 

of m
diagΣ̂ . Iteratively apply (5), (6) until convergence. 

 For Ortho-STC 
By applying the Lagrange multiplier for orthonormal con-

straint to (1)[2, 13], rows of rÂ are obtained by simultaneously 
solved from nonlinear equations united both (5) and (8): 
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It can be seen that to attain a row vector and the corresponding 
diagonal elements satisfying orthonormal constraint, Nd+d(d-
1)/2 equations are to be solved, assuming N is number of Gaus-
sians in )( r

M . A very efficient algorithm, FG algorithm[13], can 
be adopted, which generalizes the Jacobi algorithm for simulta-
neously diagonalizing multiple weighted symmetric matrices. 
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4) Goto 2) until convergence. 
It should be noted that in STC algorithm described in [1], 

only one EM iteration performed, followed by one or two Baum-
Welch model parameters re-estimation, which differs from above 
procedure that both the transformation and HMM parameters are 
jointly re-estimated by multiple EM iterations. 

4. MODEL SELECTION VIA BIC 

It is known that models with too few parameters are always in-
sufficient to model data complexity whereas too many leads to 
overtraining. Thus, the art of building a good acoustic model 
often lies in finding the right balance between the number of free 
parameters in the system and the amount of training data avail-
able. Parameter tying can be used to control model complexity 
and to improve the quality of estimates, hence to assure generali-
zation capacity and to balance the computational loads as well. 

In this paper, BIC, a likelihood criterion penalized by the 
model complexity, is used for model selection. Assuming we are 
given data set O and a set of candidates of desired parametric 
models Φ, then the optimal model should be selected by BIC for 
the given data[11]: 

)))(log()(5.0),((logmaxargˆ ONrOrdOL iii
×Φ×−Φ=Φ λ  (9) 

where Ord(Φi) is the number of parameters in model Φi, Nr(O) 
is the number of training data. Typically, penalty weight λ = 1. 

Here we apply BIC to determine the number of semi-tied 
transformations. The proposed method includes two steps: 1) 
apply STC/Ortho-STC for every HMM states; 2) build a bottom-
up tree using a greedy search technique based on the least loss of 
the likelihood on the whole acoustic space[12]. The loss function 
can be herein defined as relative likelihood loss rate when certain 
state is transformed by other transformations. To build up the 
tree, starting from the whole set of HMM states with distinct 
transformation representing leaves, closest couple of states are 
first selected according to minimal loss criterion to define a new 
father node. A transform is then derived for the new node and 
the loss functions for all free nodes are renewed. This operation 
is repeated on the free nodes until the BIC value starts to drop. 

Figure 1 illustrates how this procedure works. Here we only 
take STC for example, since the same trend can be seen for the 
case of Ortho-STC: 

 

 
Figure 1: Scaled Likelihood and BIC value with the number of 
semi-tied transformations varying. 

Clearly, with the increase of the model complexity, the like-
lihood always improves, whereas the BIC values first increases 
and then declines. Moreover, the BIC curve is even in a long 
range. In this paper, the optimal BIC value for STC is at 1,036 
transformations and at 916 transformations for Ortho-STC.  

At least three merits are enjoyed by the proposed technique: 
1) model complexity and generalization can be well balanced via 
the imbedded BIC criterion; 2) a good starting point provided by 
the first step will benefit the following EM procedures; 3) com-
ponents assignment can be found based on ML criterion. 

5. EXPERIMENTS AND RESULTS 

All experiments are carried out on our large vocabulary continu-
ous mandarin speech recognition system[14]. Acoustic training 
database is composed of around 200,000 sentences of read, 
male/female balanced speech data recorded by about 500 speak-
ers in quiet environments. The total number of phones(including 
silence as a separated phone) is 62, from which 2,776 distinct 
states were formed by a state clustered decision tree system. 
There were 16 Gaussian components used to model each state. A 
trigram language model is used in all the tests with a 40,000 
words vocabulary. Other settings, including acoustic front-end, 
HMM topology, were the same as described in [14].  

The testing set includes self-recorded, male/female balanced 
1,200 utterances read by 20 speakers. The error rate is evaluated 
by character(CER) and is averaged over all 20 testing speakers. 
CER for the baseline system is 19.3%. 

5.1. Evaluation of the Joint Optimization of Semi-tied Trans-
formations and HMM Parameters 

In this section, the objective is to evaluate the joint optimization 
and to compare its performance with respect to the standard one 
EM iteration optimization alone. The transformation classes are 
determined empirically by 1) global transformation; 2) individ-
ual transformation per state; 3) phone level transformation where 
all components of all states from the same phone share same 
class. In figure 2, STC systems with different transformation 
classes are used to test the performance of joint optimization. 
 

 
Figure 2: Recognition performance of joint optimization on STC. 

For one thing, about further 8% relative error reduction typi-
cally can be seen after four iterations compared with the standard 
one-iteration STC. For example, a relative 8.8% vs. 17.1% error 
reduction can be obtained after one and four iterations respec-
tively for phone level transform. The best performance in this 
test is a relative reduction of CER 23.3% obtained by state level 
transform after 4 iterations, indicating the effectiveness of joint 
optimization of both transformation and HMM parameters, 
which is well understandable by the nature of EM algorithms.  

Another aspect is that with the increasing of the number of 
transforms, a consistent reduction of error rate can be shown. 
This seems to contradict the result of [7]: increasing the number 
of transforms showed no reduction in error rate. After a thorough 
comparison, we found that the training data set of [7] is com-
posed of 36,493 sentences and by which a 6,399*12 Gaussians 
system is built, whereas 200,000 sentences to estimate 2,776*16 
Gaussians in this paper. In heuristics, we attribute this disparity 
to the balance of model complexity and the amount of training 
data, e.g., how many transformations will best suit for a given 
task. This conjecture directly inspires the study of section 4. 

5.2. Comparison of STC and Ortho-STC 

The experiments presented in this section are aimed at compar-
ing the performance and behavior of the unconstrained standard 
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STC with the constrained Ortho-STC under different model 
complexity, e.g., global, phone and state level. Best results by 
joint optimization formulation are used in this evaluation. 

The results are illustrated in figure 3, which leads to the fol-
lowing comments: STC shows effectiveness over Ortho-STC 
under all three cases and the difference is reduced with the in-
crease of the number of transformations. The trend explicitly 
shows the tradeoff between the mathematical rigor and the need 
of parameter tying. The more parameters tied, the more loss of 
performance brought by mathematic restrict will be seen. 
Analogous tendency can also be found in [2]. 
 

 
Figure 3: Comparison between STC and Ortho-STC with the 
number of semi-tied transformations varying. 

5.3. Evaluation of Model Selection Strategy 

In this section, performance of bottom-up clustering tree based 
model selection via BIC technique(named as BICTree hereafter) 
is presented. As a comparison, following routines are also im-
plemented: Apply top-down cluster tree for components assign-
ment by distance in acoustic space[10], followed by joint 
optimization(named as RegTree hereafter).  
 

STC Ortho-STC 
RegTree BICTree RegTree BICTree 
16.0 / 62 15.5 / 62 16.5 / 62 16.1 / 62 

15.2 / 1036 14.6 / 1036 15.6 / 916 15.0 / 916 
14.8 / 2776(State) 15.0 / 2776(State) 

Table 2: Performance comparison between routines of BICTree 
and RegTree respectively. The figures before slash in the table 
are CER in % and the others are the number of transformations. 

Table 2 illustrated that the model selected by BIC are com-
parable or even better than the state systems with far more com-
plexity, which will lead to more robust parameter estimation and 
less computational load. Another crucial aspect is that under the 
same model complexity, the system built by the proposed BIC-
Tree procedure outperformed the system built by above RegTree 
routines by about 0.4 - 0.6 in % absolute. 

In figure 4 below, STC is taken for example to present the 
performance of the system built by BICTree. It is clear that the 
CER curve coincides with the BIC curve of figure 1 well. And 
also there is a long even range that the system kept in better per-
formance, e.g., from about 500 to 2776 transformations herein. 
 

 
Figure 4: Performance of the STC system built by BICTree with 

the number of semi-tied transformations varying. 

6. CONCLUSIONS 

This paper has presented comparisons among some variants of 
PTC family from the view of model complexity and computa-
tional load. Based on the comparison, two representatives from 
both unconstrained and constrained categories respectively are 
compared in depth, e.g., STC and Ortho-STC.  

Based on these variants, two techniques are also studied. The 
technique of joint optimization of both transformations and 
HMM parameters are introduced to exploit the potential of PTC, 
from which a further 8% relative error reduction has been re-
ported compared with the standard one EM iteration scheme. To 
balance the amount of training data, model complexity thus to 
assure generalization, also balance computational load, an effi-
cient model selection technique based on hierarchical tree via 
BIC is proposed to decide the number and structure of transfor-
mations, the performance of selected model are comparable or 
even better than the systems with far more complexity. 
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