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ABSTRACT

In this paper, some practical implementation issues on Partially
Tied Covariance(PTC) modeling are discussed. First, from the
view of model complexity and computational load, a brief com-
parison is made for some variants of PTC. From the analysis,
two representatives, STC[1] and Ortho-STC[2] are compared in
details in the rest of the paper. Second, based on these variants,
two techniques are studied. One technique is joint optimization
of both transformation and HMM parameters, which will exploit
the potential of PTC. And the other technique is model selection
by hierarchical tree via Bayesian Information Criterion(BIC),
which will decide the number and structure of transformation
classes thus to assure the generalization capacity. Experiment
results showed that STC always outperforms Ortho-STC due to
the effect of parameter tying and by the application of above two
techniques the system performance can be much improved.

1. INTRODUCTION

Covariance modeling for multidimensional speech data is a stan-
dard problem in acoustic modeling of the automatic speech rec-
ognition(ASR) systems. Typically, mixture of diagonal Gaus-
sians are simply chosen to describe the acoustic features, with
the underlying assumption that each element of the relatively
high dimensional feature vector is independent. Since it is hard
to find a single transform that de-correlates speech features of all
states in a Hidden Markov Model(HMM) ASR system, the above
assumption is always not true. The intra-frame correlations
should be explicitly modeled, at least partly, to reinforce the
system performance.

Efficient solutions should not only provide robust parameter
estimation, but also have low memory and computational time
overhead. The two extremes are diagonal-covariance model and
the full-covariance one. Recently a number of tradeoffs among
computational, storage and training data sparseness have been
suggested and widely used in many state-of-the-art speech and
speaker recognition systems[1-11]:

First category is the Partially Tied Covariance(PTC) model-
ing[1-8], a definition derived from[6]. They have in common
that the full covariance(or its inverse) of each Gaussian compo-
nent can be factored into the form ADA”, where the state de-
pendent untied parameter D is diagonal and the state independent
parameter A4 is a linear transform, which is shared over a set of
Gaussian components. They are different in the constraints
putted on 4 and/or D.
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The second one is Factor Analyzed(FA) covariance model-
ing [9, 10, 11], a kind of continuous-state linear Gaussian system
modeling covariance structure of high dimensional static data
using a small number of latent variables.

In addition, some variants can also be found: covariance se-
lection[6] and model selection[7, 11]. The idea behind covari-
ance selection is that by using a data-driven sparse structure on
the covariance inferred from thresholding of the sample inverse
covariance matrix, the unnecessary parameters of a system can
be eliminated. As to the model selection, model structure[11],
the assignment of the transformations[7] can be optimized.

Though there are some possible efficient algorithms for the
likelihood computation involved in FA covariance models, the
computational load is still much heavier than PTC models. So in
this paper, we only concentrate on PTC and consider following
problems:

1) Some variants of PTC are compared from the view of model
complexity and computational load, based on the comparison
we further choose the unconstrained STC[1] and Common
Principal Components(CPC)[13] based orthonormal con-
strained STC(Ortho-STC)[2] for detailed comparison.

2) Two techniques are studied to optimize PTC, e.g., joint op-
timization of transformation and HMM parameters by multi-
ple EM iterations[2] and model selection procedure on the
number and structure of semi-tied transformations based on
the Bayesian Information Criterion(BIC)[11].

The rest of the paper is organized as follows. In the
following section, a brief review of some variants of PTC is
described. In section 3, comparison and joint optimization of
both transformation and HMM parameters for STC and Ortho-
STC are made in depth, followed in Section 4, a new model
selection procedure is introduced. Given all above, experiment
results are presented in section 5, and we conclude in section 6.

2. COMPARISON OF SOME VARIANTS OF PTC

PTC modeling originates from various matrix decomposition
methods for symmetric positive definite covariance matrix(or its
inverse), e.g., C =ADA”, where D is diagonal, matrix 4 can be of
arbitrary form. According to the form of 4, PTC can be catego-
rized into two classes: constrained and unconstrained. For the
former, some constraints are putted on A to remain mathematical
restriction whereas for the latter, 4 is of any form.

2.1. Constrained PTC

Two variants are formerly used in speech recognition systems:
Eigen-decomposition, named as State-Specific Rotation(SSR) in
[3], and Cholesky-decomposition, named as Factored Sparse
Inverse Covariance(FSIC) in [6]. In SSR, state dependent A4 is
orthonormal and is composed by eigenvectors and D is made up
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with real and positive eigenvalues. The feature space is rotated
and all intra-frame correlations are removed. As in FSIC, 4 is a
unit upper-triangular matrix that has ones along the diagonal and
D is positive diagonal matrix. The matrix 4 describes intra-frame
correlations, some elements can be forced to zeros by some co-
variance selection criterion. When 4 is tied across HMM states,
the mathematical constraints can still be kept: SSR can be ex-
tended by Ortho-STC[2, 13], a CPC based simultaneous diago-
nalizing several weighted covariance algorithm, and FSIC can be
extended by General EM algorithm as authors of [8] did.

2.2. Unconstrained PTC

There are no structural constraints putted on 4. In addition to
STC introduced in [1], some extensions have also emerged: 1)
EMLLT[4] constrains the inverse covariance matrix of each
Gaussian to be a linear combination of B rank one matrices. B is
typically higher than the dimension of the feature d, if they are
equal, the model moves back to global STC. 2) EMLLT model
has been further extended to SPAM[5] by loosening rank one
constraint for the basis subspace.

2.3. Comparison of Complexity and Computational Load

Covariance Models Number Of Parameters Computational Load

Diagonal M2d + 1) O(2Md)
Full Mdd+ 1)2+d+ 1) OM(d’ +d))
Cons- Ortho-STC M2d + 1) + Rd’ O@2Md + Rd)
Trained FSIC M(2d + 1)+Rd(d - 1)/2 0(2Md + Rd)
Uncons- STC M(2d + 1) + R& 0@2Md + Rd)
trained EMLLT M@B+d+1)+Bd OM(B + d) + Bd)
SPAM M@B+d+1)+Bdd+1)/2 O(M(B +d) + Bd’)

Table 1: Comparison among some variants of PTC from the
view of model complexity and computational load.

In table 1, let M be the total number of Gaussians of the system,
which is typically on the order of 10,000, R denotes the number
of transformation classes(also as semi-tied classes hereafter) and
B, d are defined as those in section 2.2. From the table, it can be
concluded that 1) all PTC models are compromises of reliable
estimation of model parameters and computational cost between
two extremes, e.g., diagonal and full covariance models; 2) both
EMLLT and SPAM models are typically more computationally
expensive than other PTC models.

We also believe that 1) there is some subtle relation between
constrained and unconstrained PTC, in the following section, we
take Ortho-STC and STC into detailed consideration of compari-
son; 2) with appropriate complexity control of the number of the
model parameters, a balance leading to the best performance can
be reached, which will be concerned in section 4.

3. JOINTLY OPTIMIZING OF TRANSFORMATION AND
HMM PARAMETERS FOR ORTHO-STC AND STC

The unconstrained linear transformations may suffer from being
unable to properly reflect the nature of the acoustic parame-
ters[12], whereas when 4 is constrained to be orthonormal, it
will lead to an explicit mathematical explanation as they are
derived from the eigenvectors of the full covariance matrices.
Moreover, with the orthonormal constraint, the Jacobian |A|”
equals to one, which means that the likelihood got in the original
and the transformed spaces are directly comparable.

Because of the hidden nature of the state/mixture occupancy
in HMM, an iterative two-step algorithm, expectation maximiza-
tion(EM), can be used by maximizing the auxiliary function Q (1)
with respect to HMM parameters and transformation: (P, 4).

Assuming o(r)to be the d dimension observation at time 7 ,
following auxiliary function must be optimized:

QP AP, A= Yy, (1)x 0

Hog " +log 12 L _ (o(2) ~ ") A7 7! A (0(r) — ")}
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@) . .
where for the m" (m « m"” )Gaussian component of the " semi-
tied class, the mixture weight, mean and diagonal covariance of
the Gaussian component are denoted as w", " andzzx_ respec-

jag

tively, and /(") is state/mixture occupancy probability at time 7 .

For both STC and Ortho-STC, sum of the mixture weights
belonging to a state is constrained to be one. Especially for Or-
tho-STC, following constraint should also be satisfied for or-
thonormal property of 4™

A AT =1

where [ is d by d identity matrix.

According to EM algorithm, following procedure is summa-
rized for the joint optimization of (P, A):

1) Initialization: find an initial estimate of p={" " (T80}

and set A" to be [;

2) E-step: compute the state/mixture occupancy probability
attimez :y (z)= p(m |o(z),P);

3) M-step: First using current estimation A" (or an identity
matrix) to maximize (1) with respect to model parameters by
taking partial derivative with p, we obtain:

W= 7, (O} T @
i = 7, @@ Y. 7,0 3)
W =3 7, (@) - " )o(r) - i") Y 7, ()} @

Second, estimate semi-tied transform A" using current set P :

»  For STC

A row by row optimization algorithm is introduced in [1], for
a particular i row of A", a'

£n = diag(AW"A™") )
7u(7)
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where ¢; is i row vector of the cofactors of A”, 6 is element i
jag

of g - Iteratively apply (5), (6) until convergence.

»  For Ortho-STC

By applying the Lagrange multiplier for orthonormal con-
straint to (1)[2, 13], rows of A”are obtained by simultaneously
solved from nonlinear equations united both (5) and (8):

Ar { Z O-dlaél deg/ sz}/m(z_)}
meM ") o-dlagt dlag/

It can be seen that to attain a row vector and the corresponding
diagonal elements satisfying orthonormal constraint, Nd+d(d-
1)/2 equations are to be solved, assuming N is number of Gaus-
sians in v . A very efficient algorithm, FG algorithm[13], can
be adopted, which generalizes the Jacobi algorithm for simulta-
neously diagonalizing multiple weighted symmetric matrices.

=0iz; ©®

I -909




4) Goto 2) until convergence.

It should be noted that in STC algorithm described in [1],
only one EM iteration performed, followed by one or two Baum-
Welch model parameters re-estimation, which differs from above
procedure that both the transformation and HMM parameters are
jointly re-estimated by multiple EM iterations.

4. MODEL SELECTION VIA BIC

It is known that models with too few parameters are always in-
sufficient to model data complexity whereas too many leads to
overtraining. Thus, the art of building a good acoustic model
often lies in finding the right balance between the number of free
parameters in the system and the amount of training data avail-
able. Parameter tying can be used to control model complexity
and to improve the quality of estimates, hence to assure generali-
zation capacity and to balance the computational loads as well.

In this paper, BIC, a likelihood criterion penalized by the
model complexity, is used for model selection. Assuming we are
given data set O and a set of candidates of desired parametric
models @, then the optimal model should be selected by BIC for
the given data[11]:

® = argmax(log L(O,®,) — 0.5 x Ord (®,) x log(Nr(0))) (9)

where Ord(®,) is the number of parameters in model &;, Nr(O)
is the number of training data. Typically, penalty weight A = 1.
Here we apply BIC to determine the number of semi-tied
transformations. The proposed method includes two steps: 1)
apply STC/Ortho-STC for every HMM states; 2) build a bottom-
up tree using a greedy search technique based on the least loss of
the likelihood on the whole acoustic space[12]. The loss function
can be herein defined as relative likelihood loss rate when certain
state is transformed by other transformations. To build up the
tree, starting from the whole set of HMM states with distinct
transformation representing leaves, closest couple of states are
first selected according to minimal loss criterion to define a new
father node. A transform is then derived for the new node and
the loss functions for all free nodes are renewed. This operation
is repeated on the free nodes until the BIC value starts to drop.
Figure 1 illustrates how this procedure works. Here we only
take STC for example, since the same trend can be seen for the
case of Ortho-STC:
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Figure 1: Scaled Likelihood and BIC value with the number of
semi-tied transformations varying.
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Clearly, with the increase of the model complexity, the like-
lihood always improves, whereas the BIC values first increases
and then declines. Moreover, the BIC curve is even in a long
range. In this paper, the optimal BIC value for STC is at 1,036
transformations and at 916 transformations for Ortho-STC.

At least three merits are enjoyed by the proposed technique:
1) model complexity and generalization can be well balanced via
the imbedded BIC criterion; 2) a good starting point provided by
the first step will benefit the following EM procedures; 3) com-
ponents assignment can be found based on ML criterion.

5. EXPERIMENTS AND RESULTS

All experiments are carried out on our large vocabulary continu-
ous mandarin speech recognition system[14]. Acoustic training
database is composed of around 200,000 sentences of read,
male/female balanced speech data recorded by about 500 speak-
ers in quiet environments. The total number of phones(including
silence as a separated phone) is 62, from which 2,776 distinct
states were formed by a state clustered decision tree system.
There were 16 Gaussian components used to model each state. A
trigram language model is used in all the tests with a 40,000
words vocabulary. Other settings, including acoustic front-end,
HMM topology, were the same as described in [14].

The testing set includes self-recorded, male/female balanced
1,200 utterances read by 20 speakers. The error rate is evaluated
by character(CER) and is averaged over all 20 testing speakers.
CER for the baseline system is 19.3%.

5.1. Evaluation of the Joint Optimization of Semi-tied Trans-
formations and HMM Parameters

In this section, the objective is to evaluate the joint optimization
and to compare its performance with respect to the standard one
EM iteration optimization alone. The transformation classes are
determined empirically by 1) global transformation; 2) individ-
ual transformation per state; 3) phone level transformation where
all components of all states from the same phone share same
class. In figure 2, STC systems with different transformation
classes are used to test the performance of joint optimization.
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Figure 2: Recognition performance of joint optimization on STC.

For one thing, about further 8% relative error reduction typi-
cally can be seen after four iterations compared with the standard
one-iteration STC. For example, a relative 8.8% vs. 17.1% error
reduction can be obtained after one and four iterations respec-
tively for phone level transform. The best performance in this
test is a relative reduction of CER 23.3% obtained by state level
transform after 4 iterations, indicating the effectiveness of joint
optimization of both transformation and HMM parameters,
which is well understandable by the nature of EM algorithms.

Another aspect is that with the increasing of the number of
transforms, a consistent reduction of error rate can be shown.
This seems to contradict the result of [7]: increasing the number
of transforms showed no reduction in error rate. After a thorough
comparison, we found that the training data set of [7] is com-
posed of 36,493 sentences and by which a 6,399*12 Gaussians
system is built, whereas 200,000 sentences to estimate 2,776*16
Gaussians in this paper. In heuristics, we attribute this disparity
to the balance of model complexity and the amount of training
data, e.g., how many transformations will best suit for a given
task. This conjecture directly inspires the study of section 4.

5.2. Comparison of STC and Ortho-STC

The experiments presented in this section are aimed at compar-
ing the performance and behavior of the unconstrained standard
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STC with the constrained Ortho-STC under different model
complexity, e.g., global, phone and state level. Best results by
joint optimization formulation are used in this evaluation.

The results are illustrated in figure 3, which leads to the fol-
lowing comments: STC shows effectiveness over Ortho-STC
under all three cases and the difference is reduced with the in-
crease of the number of transformations. The trend explicitly
shows the tradeoff between the mathematical rigor and the need
of parameter tying. The more parameters tied, the more loss of
performance brought by mathematic restrict will be seen.
Analogous tendency can also be found in [2].
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the number of semi-tied transformations varying.

6. CONCLUSIONS

This paper has presented comparisons among some variants of
PTC family from the view of model complexity and computa-
tional load. Based on the comparison, two representatives from
both unconstrained and constrained categories respectively are
compared in depth, e.g., STC and Ortho-STC.

Based on these variants, two techniques are also studied. The
technique of joint optimization of both transformations and
HMM parameters are introduced to exploit the potential of PTC,
from which a further 8% relative error reduction has been re-
ported compared with the standard one EM iteration scheme. To
balance the amount of training data, model complexity thus to
assure generalization, also balance computational load, an effi-
cient model selection technique based on hierarchical tree via
BIC is proposed to decide the number and structure of transfor-
mations, the performance of selected model are comparable or
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Figure 3: Comparison between STC and Ortho-STC with the
number of semi-tied transformations varying.

5.3. Evaluation of Model Selection Strategy

even better than the systems with far more complexity.
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