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ABSTRACT 2. MIXTURES OF INVERSE COVARIANCES

We introduce a model that approximates full and block- A GMM for a D-dimensional input vectos, composed of
diagonal covariances in a Gaussian mixture, while reduc- N Gaussians with priors;, meansu; and covariances;
ing significantly both the number of parameters to estimate can be expressed as:

and the computations required to evaluate the Gaussian like- N

lihoods. The inverse covariance of each Gaussian is ex- f(o) = Zﬂi/\/(o’ w;, )

pressed as a mixture of a small set of prototype matrices. =1

Estimation of both the mixture weights and the prototypes
is performed using maximum likelihood estimation. Exper-
iments on a variety of speech recognition tasks show that
this model significantly outperforms a diagonal covariance

model, while using theame numbesf Gaussian-dependent ) K
parameters. =) Al 1)
k=1

A Mixture of Inverse Covariances is defined by sefof
prototype symmetric matriceB, such that for each Gaus-
sians there is a vecton; with components,;, ; satisfying:

Note that the mixture “weightsA,; € R are not con-
1. INTRODUCTION strained to be positive. Such modeling approaches have
been investigated in the past, with various constraints im-

When using a Gaussian mixture model (GMM) to represent posed on the structure of the mixture. Semi—'tied Covari-
a distribution, it is common to impose some constraints to 2NCes [4] and Factored Sparse Inverse Covariances [5] are
the structure of the covariance matrices in order to reduceinstances of itwithl, = 1, K’ = D and Rank¥y,) = 1. The

the number of parameters to estimate, as well as the amounpemi-tied model was later extended/to> D in [6].

of computations needed to evaluate the GMM. In general,  In this paper, we allow arbitrary’, and use fuII—rank_
speech recognition systems constrain the covariances to b@rototypes. This reduces the number of prototypes required

diagonal, using the assumption that distinct feature compo-t0 achieve the same modeling power as compared to the
nents are uncorrelated. rank-one case. A similar model has recently been indepen-

; ; dently proposed [7]. In the following, we introduce a dif-
Typical speech input features are weakly correlated be- .
yp P P y ferent mathematical treatment of the full-rank model. We

cause the final stage of the front-end processing is in gen-

eral some form of whitening of the feature vector. This can constram thel’;; to be positive deﬁmte, Wh'ch will allow
be achieved through a Discrete Cosine Transform that aIO_us to derive provably stable algorithms to estimate both the

proximates the Karhunen-ee transform [1] in the case weights and prototype matrices using maximum likelihood.

of standard Mel filterbank cepstral coefficients (MFCCs), or . A blqck-d|agonal_ m|>§ture can glso be expressed in sim-
linear discriminant analysis [2]. Correlations between fea- llar fashion by considering. covariance sub-blocks of di-
ture components are also implicitly modeled by the different mensionalityD:
modes of the mixture itself. K

However, explicit modeling of the correlations gener- Ef,zl = Z)‘k’i,l‘l’k,l
ally leads to better models [3], both in terms of improving k=1
recognition accuracy and reducing the size of the mixturesSince each of thd. subspaces is independently modeled
required to model the acoustics. There is thus a strong in-with distinct prototypes and weights, this leads to greater
terest in making full covariance modeling practical both in model flexibility as shown in Section 5. Without loss of
terms of the number of parameters to estimate as well asgenerality, the following developments will focus on the full
computational efficiency. covariance (single subspace) model.
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3. LIKELIHOOD COMPUTATION algorithm [8]. The maximization step of the algorithm cor-
responds here to the maximization of the auxiliary function:
The log-likelihood of a Gaussian for observation veator

. N
can be written:

QP,A) = > m[log|uy ! - Tr(S7'5)]

£(o) S0 1) o p) -
— C — — —_
2 . Conditioned on tha&;, being positive definite, the func-
_ ! Z o U0+ uTS o tions Q(P_|A) and Q(NP) are both concave. I.n addition,
“ KO T H the domainsC : A/{Vi, PA; = 0} andP : P/{Vi, PA; ~

k= 0} are convex. Thus, the problem of jointly estimatiftg

and A can be decomposed into two convex optimization

Thetermip ™1 n rbed into the con . )
ete “ p can be absorbed into the constait= problems [9] to be solved iteratively:

c— —MTZ p. The vectow : wy, = 2o V0 is indepen-

dent of the Gaussian and can be Computed as an additional Maximize Q(A|P) | Maximize Q(P|A)
K-dimensional feature vector appendedta = —X "1 Subject toA € £ Subject toP € P
is an L-dimensional vector, which leads to:
4.1. Maximum Likelihood Estimation of the Weights
o':[o} ’:[V} E(o):c’—u’To’ . N . :
A The weight estimation given the prototype covariances can

be carried out efficiently using a Newton algorithm. The
This computation require® + K sums and products, gradient of the auxiliary function can be written:
to be compared witR D for a diagonal Gaussian. Note that
K can be smaller thav, in which case the Gaussians are ﬂ Tr [y (S; — 5)] or 9Q =PT(Zr-%))
less expensive to evaluate than in the diagonal case. Ok, " oA, o
The front-end overhead is limited to the computation of
w, which is of the order ogKD2 multiplications using the
Cholesky decompositioh; L, of ¥y ?Q
ONeiONi

The components of the Hessiahare:

—Tr [\IkaZ\I!lZz]
=1/V2Ljo = w = T
(o) V2 kO wk = i (0) a(o) The optimization can be noticeably simplified by re-

Note that when using a block diagonal model, the front-end Marking that for any covariance:

i 2
overhead is further reduced to at mggt [max, D;]?. T = Ty(£2 1) = D (= dimensionality)

4. ESTIMATION OF THE MODEL Thus, when the gradient equals zero:

>*TPA=(P'E)TA=D
In the following, we will sometimes represent a symmet-
ric matrix A in vector form — notedA*, constructed by  This relationship defines an affine hyperplane in whicts
stacking together the diagona) and the super-diagonals constrained to live. Denoting a basis of the orthogonal of

a;,i € [1, D — 1] multiplied by /2: PTE", we have:
=[ag V2a] ...v2a} ,]" A= Ao+ UA’" with AO:DPT—2
0 1 D-1 PTS |
The V2 factor ensures FhaTT(AB)* = A**TB*- Using this It is easy to show that if the prototypes are positive defi-
convention, anidjienotlnﬁ’ = [P7... ¥;], we can write  pite, thenPA, is also positive definite. Consequently, €
Equation 1 a&lj™ " = PAz _ L, and can be used as an approximatiosoh order to ini-
The sample covariance estimated from the observationstialize the algorithm. The gradient ascent algorithm will be
o, and priorsy; ; Is: performed oM’ € Span(U), which is of dimensiork — 1.
- By concavity of Q(A|P), the algorithm will converge to a
S =Y itlor— ) (or — ;)" global maximum.
t The projection matrix ont&pan(U) : II = UU T can

) ) be computed once. The Hessian can be computed at each
Given the independent parametersy;, and the sam- gt of the iteration, leading to an update step:
ple covarianc&;, the parameters of the mod@?, A), with B

A ={A4,...,An}, can be estimated jointly using the EM A=TIH'PT(Z* - %"
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The Newton update\ — A + A converges after a
few iterations. In generaj = 1, although in the first steps
of the iteration it sometimes needs to be reduced to prevent
intermediate estimates of to step out of_.

# Classes

# Blocks

# Gaussian
Parameters
Error Rate
Relative
Improvement

# Structure

. L L 1 Diagonal 27 10.02%
4.2. Maximum Likelihood Estimation of the Prototypes 5 Block

1| 2 |171+45| 8.42% | 16.0%
It is possible to show that maximizir@(P|A) is equivalent 3 Full 11 378 8.27% | 17.5%
to maximizing a functior)’ whose gradient is: 4 MIC 1)1 9 9.99% | 0.3%
5 MIC 1|1 27 9.21% | 8.1%
Q' N B 6 MIC 30| 1 27 8.77% | 12.5%
50, = D ik (Ti — i) 7 MIC | 1|2 6+3 | 9.48% | 5.4%
i=1 8 MIC 1|2 18+9 8.93% | 10.9%
Denotingo? thep™ column of;, the Hessian components Table 1. Error rates on a set of Italian tasks.
are:
O 1 i A2 obo? + olo?T] 5. APPLICATION TO ACOUSTIC MODELING
DOV g L4 0y & RalZiTe T TT

4 =1

The exact Hessian would be expensive to compute using'n the simplest approach, the model can be used to tie the
this formula, but it can be well estimated by only adding complete set of covariances in the acoustic model. All the
up the contributions of the few Gaussians with the high- Gaussians are pooled into a single GMM using the priors
estm; A2 , weight. This approximation leads to an efficient estimated from the hidden Markov model state occupancy
quasi-N’ewton algorithm. probabilities, and the prototypes are estimated on the entire

An additional speed improvement can be obtained by mixture after being initialized using Lloyd clustering.

performing a similar pruning on the gradient based on the A slightly more involved approach uses separate mix-

magnitude|m; A, ;| of the contribution of each covariance. tures for distinct state classes. While this leads to a signif-

As an example, in the following experiments, less than 10% jcant increase in the total number of parameters in the sys-

of the Gaussians were used to estimate the gradient, and lesgm, the additional complexity at run time can be alleviated

than 1% were incorporated into the Hessian. by only computing the prototype-dependent features for the
As previously, the step size has sometimes to be re- active states at any given time during the decoding.

duced to a smaller value in the first iterations to avoid step-

ping out of the domaifP In both situations, the model used can be full or block-

diagonal. In addition to reducing both the front-end over-
head and training time, the block-diagonal model has a com-
binatorial advantage which it shares with other types of sub-
space clustering methods (see e.g. [11]): a block-diagonal
The overall speed of convergence of the algorithm can besystem withL subspaces an& prototypes per subspace
much improved by selecting a good initial set of prototypes. contains implicitly X'~ “full” prototypes, while only requir-
In order for these to be representative of the GMM to be ing K x L weights per Gaussian. As a result, for a given
modeled, they can be selected using Lloyd clustering ap-number of Gaussian-dependent parameters, the block diag-
plied to all the covariances in the mixture. onal model can “draw” from a larger collection of proto-
A Kullback-Liebler distance criterion is a natural choice types than its single-block counterpart.
of a metric [10]. The distance between the Gaussian means  This block-diagonal approach can only be of interest if

can be ignored, since it is irrelevant to the model. In addi- the cost of not taking some of the correlations into account
tion, the variations in the scale of the prototypes —i.e. their remains small. Table 1 (2,3) compares the accuracy of a
determinant — can be normalized for, since it is captured by {||-covariance system to a block-diagonal system — both
the weights. This leads to the following symmetric distance yescribed in Section 6 — for which the feature vector is

4.3. Algorithm Initialization

measure used for clustering: decomposed into two blocks, one containing the cepstra and
T T A features, and the other containing thé\ features. Since
d(Wy, V) = W W7 + ¥ ¥ the accuracy cost is modest, the two blocks can be treated

separately with their own sets of weights and prototypes.
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