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ABSTRACT

We introduce a model that approximates full and block-
diagonal covariances in a Gaussian mixture, while reduc-
ing significantly both the number of parameters to estimate
and the computations required to evaluate the Gaussian like-
lihoods. The inverse covariance of each Gaussian is ex-
pressed as a mixture of a small set of prototype matrices.
Estimation of both the mixture weights and the prototypes
is performed using maximum likelihood estimation. Exper-
iments on a variety of speech recognition tasks show that
this model significantly outperforms a diagonal covariance
model, while using thesame numberof Gaussian-dependent
parameters.

1. INTRODUCTION

When using a Gaussian mixture model (GMM) to represent
a distribution, it is common to impose some constraints to
the structure of the covariance matrices in order to reduce
the number of parameters to estimate, as well as the amount
of computations needed to evaluate the GMM. In general,
speech recognition systems constrain the covariances to be
diagonal, using the assumption that distinct feature compo-
nents are uncorrelated.

Typical speech input features are weakly correlated be-
cause the final stage of the front-end processing is in gen-
eral some form of whitening of the feature vector. This can
be achieved through a Discrete Cosine Transform that ap-
proximates the Karhunen-Loève transform [1] in the case
of standard Mel filterbank cepstral coefficients (MFCCs), or
linear discriminant analysis [2]. Correlations between fea-
ture components are also implicitly modeled by the different
modes of the mixture itself.

However, explicit modeling of the correlations gener-
ally leads to better models [3], both in terms of improving
recognition accuracy and reducing the size of the mixtures
required to model the acoustics. There is thus a strong in-
terest in making full covariance modeling practical both in
terms of the number of parameters to estimate as well as
computational efficiency.

2. MIXTURES OF INVERSE COVARIANCES

A GMM for a D-dimensional input vectoro, composed of
N Gaussians with priorsπi, meansµi and covariancesΣi
can be expressed as:

f(o) =
N∑
i=1

πiN (o,µi,Σi)

A Mixture of Inverse Covariances is defined by set ofK
prototype symmetric matricesΨk, such that for each Gaus-
siani there is a vectorΛi with componentsλk,i satisfying:

Σ−1
i =

K∑
k=1

λk,iΨk (1)

Note that the mixture “weights”λk,i ∈ R are not con-
strained to be positive. Such modeling approaches have
been investigated in the past, with various constraints im-
posed on the structure of the mixture. Semi-tied Covari-
ances [4] and Factored Sparse Inverse Covariances [5] are
instances of it withL = 1,K = D and Rank(Ψk) = 1. The
Semi-tied model was later extended toK > D in [6].

In this paper, we allow arbitraryK, and use full-rank
prototypes. This reduces the number of prototypes required
to achieve the same modeling power as compared to the
rank-one case. A similar model has recently been indepen-
dently proposed [7]. In the following, we introduce a dif-
ferent mathematical treatment of the full-rank model. We
constrain theΨk to be positive definite, which will allow
us to derive provably stable algorithms to estimate both the
weights and prototype matrices using maximum likelihood.

A block-diagonal mixture can also be expressed in sim-
ilar fashion by consideringL covariance sub-blocks of di-
mensionalityDl:

Σ−1
i,l =

Kl∑
k=1

λk,i,lΨk,l

Since each of theL subspaces is independently modeled
with distinct prototypes and weights, this leads to greater
model flexibility as shown in Section 5. Without loss of
generality, the following developments will focus on the full
covariance (single subspace) model.
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3. LIKELIHOOD COMPUTATION

The log-likelihood of a Gaussian for observation vectoro
can be written:

L(o) = c− 1
2

(o− µ)>Σ−1(o− µ)

= c− 1
2
µ>Σ−1µ−

K∑
k=1

λk
2
o>Ψko+ µ>Σ−1o

The term1
2µ
>Σ−1µ can be absorbed into the constant,c′ ≡

c− 1
2µ
>Σ−1µ. The vectorω : ωk = 1

2o
>Ψko is indepen-

dent of the Gaussian and can be computed as an additional
K-dimensional feature vector appended too. ν = −Σ−1µ
is an L-dimensional vector, which leads to:

o′ =
[
o
ω

]
ν′ =

[
ν
Λ

]
L(o) = c′ − ν′>o′

This computation requiresD + K sums and products,
to be compared with2D for a diagonal Gaussian. Note that
K can be smaller thanD, in which case the Gaussians are
less expensive to evaluate than in the diagonal case.

The front-end overhead is limited to the computation of
ω, which is of the order of12KD

2 multiplications using the
Cholesky decompositionLkL>k of Ψk:

αk(o) = 1/
√

2L>k o ⇒ ωk = αk(o)>αk(o)

Note that when using a block diagonal model, the front-end
overhead is further reduced to at most1

2K[maxlDl]2.

4. ESTIMATION OF THE MODEL

In the following, we will sometimes represent a symmet-
ric matrix A in vector form — notedA?, constructed by
stacking together the diagonala0 and the super-diagonals
ai, i ∈ [1, D − 1] multiplied by

√
2:

A? = [a>0
√

2a>1 . . .
√

2a>D−1]>

The
√

2 factor ensures that:Tr(AB) = A?>B?. Using this
convention, and denotingP = [Ψ?

1 . . .Ψ
?
k], we can write

Equation 1 asΣ?−1
i = PΛi.

The sample covariance estimated from the observations
ot and priorsγi,t is:

Σ̄i =
∑
t

γi,t(ot − µi)(ot − µi)>

Given the independent parametersπi,µi, and the sam-
ple covariancēΣi, the parameters of the model(P,Λ), with
Λ = {Λ1, . . . ,ΛN}, can be estimated jointly using the EM

algorithm [8]. The maximization step of the algorithm cor-
responds here to the maximization of the auxiliary function:

Q(P,Λ) =
N∑
i=1

πi
[
log |Σ−1

i | − Tr
(
Σ−1
i Σ̄i

)]
Conditioned on theΨk being positive definite, the func-

tionsQ(P |Λ) andQ(Λ|P ) are both concave. In addition,
the domainsL : Λ/{∀i, PΛi � 0} andP : P/{∀i, PΛi �
0} are convex. Thus, the problem of jointly estimatingP
and Λ can be decomposed into two convex optimization
problems [9] to be solved iteratively:

MaximizeQ(Λ|P ) MaximizeQ(P |Λ)
Subject toΛ ∈ L Subject toP ∈ P

4.1. Maximum Likelihood Estimation of the Weights

The weight estimation given the prototype covariances can
be carried out efficiently using a Newton algorithm. The
gradient of the auxiliary function can be written:

∂Q

∂λk,i
= Tr

[
Ψk(Σi − Σ̄i)

]
or

∂Q

∂Λi
= P>(Σ?

i − Σ̄?
i )

The components of the HessianH are:

∂2Q

∂λk,i∂λl,i
= −Tr [ΨkΣiΨlΣi]

The optimization can be noticeably simplified by re-
marking that for any covarianceΣ:

Σ?>Σ?−1 = Tr(ΣΣ−1) = D (= dimensionality)

Thus, when the gradient equals zero:

Σ?>PΛ = (P>Σ̄?)>Λ = D

This relationship defines an affine hyperplane in whichΛ is
constrained to live. DenotingU a basis of the orthogonal of
P>Σ̄?

, we have:

Λ = Λ0 + UΛ′ with Λ0 = D
P>Σ̄?

‖P>Σ̄?‖2

It is easy to show that if the prototypes are positive defi-
nite, thenPΛ0 is also positive definite. Consequently,Λ0 ∈
L, and can be used as an approximation ofΛ in order to ini-
tialize the algorithm. The gradient ascent algorithm will be
performed onΛ′ ∈ Span(U), which is of dimensionK−1.
By concavity ofQ(Λ|P ), the algorithm will converge to a
global maximum.

The projection matrix ontoSpan(U) : Π = UU> can
be computed once. The Hessian can be computed at each
step of the iteration, leading to an update step:

∆ = ΠH−1P>(Σ? − Σ̄?)
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The Newton updateΛ → Λ + γ∆ converges after a
few iterations. In generalγ = 1, although in the first steps
of the iteration it sometimes needs to be reduced to prevent
intermediate estimates ofΛ to step out ofL.

4.2. Maximum Likelihood Estimation of the Prototypes

It is possible to show that maximizingQ(P |Λ) is equivalent
to maximizing a functionQ′ whose gradient is:

∂Q′

∂Ψk
=

N∑
i=1

πiλk,i
(
Σi − Σ̄i

)
Denotingσpi thepth column ofΣi, the Hessian components
are:

∂2Q′

∂Ψk∂Ψkcp,q
=

−1
1 + δp,q

N∑
i=1

πiλ
2
k,i[σ

p
iσ

q>
i + σqiσ

p>
i ]

The exact Hessian would be expensive to compute using
this formula, but it can be well estimated by only adding
up the contributions of the few Gaussians with the high-
estπiλ2

k,i weight. This approximation leads to an efficient
quasi-Newton algorithm.

An additional speed improvement can be obtained by
performing a similar pruning on the gradient based on the
magnitude|πiλk,i| of the contribution of each covariance.
As an example, in the following experiments, less than 10%
of the Gaussians were used to estimate the gradient, and less
than 1% were incorporated into the Hessian.

As previously, the step sizeγ has sometimes to be re-
duced to a smaller value in the first iterations to avoid step-
ping out of the domainP.

4.3. Algorithm Initialization

The overall speed of convergence of the algorithm can be
much improved by selecting a good initial set of prototypes.
In order for these to be representative of the GMM to be
modeled, they can be selected using Lloyd clustering ap-
plied to all the covariances in the mixture.

A Kullback-Liebler distance criterion is a natural choice
of a metric [10]. The distance between the Gaussian means
can be ignored, since it is irrelevant to the model. In addi-
tion, the variations in the scale of the prototypes — i.e. their
determinant – can be normalized for, since it is captured by
the weights. This leads to the following symmetric distance
measure used for clustering:

d(Ψk,Ψl) = Ψ?>
k Ψ?

l
−1 + Ψ?>

l Ψ?
k
−1
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1 Diagonal 27 10.02%
2 Block 1 2 171+45 8.42% 16.0%
3 Full 1 1 378 8.27% 17.5%

4 MIC 1 1 9 9.99% 0.3%
5 MIC 1 1 27 9.21% 8.1%
6 MIC 30 1 27 8.77% 12.5%
7 MIC 1 2 6+3 9.48% 5.4%
8 MIC 1 2 18+9 8.93% 10.9%

Table 1. Error rates on a set of Italian tasks.

5. APPLICATION TO ACOUSTIC MODELING

In the simplest approach, the model can be used to tie the
complete set of covariances in the acoustic model. All the
Gaussians are pooled into a single GMM using the priors
estimated from the hidden Markov model state occupancy
probabilities, and the prototypes are estimated on the entire
mixture after being initialized using Lloyd clustering.

A slightly more involved approach uses separate mix-
tures for distinct state classes. While this leads to a signif-
icant increase in the total number of parameters in the sys-
tem, the additional complexity at run time can be alleviated
by only computing the prototype-dependent features for the
active states at any given time during the decoding.

In both situations, the model used can be full or block-
diagonal. In addition to reducing both the front-end over-
head and training time, the block-diagonal model has a com-
binatorial advantage which it shares with other types of sub-
space clustering methods (see e.g. [11]): a block-diagonal
system withL subspaces andK prototypes per subspace
contains implicitlyKL “full” prototypes, while only requir-
ing K × L weights per Gaussian. As a result, for a given
number of Gaussian-dependent parameters, the block diag-
onal model can “draw” from a larger collection of proto-
types than its single-block counterpart.

This block-diagonal approach can only be of interest if
the cost of not taking some of the correlations into account
remains small. Table 1 (2,3) compares the accuracy of a
full-covariance system to a block-diagonal system — both
described in Section 6 — for which the feature vector is
decomposed into two blocks, one containing the cepstra and
∆ features, and the other containing the∆∆ features. Since
the accuracy cost is modest, the two blocks can be treated
separately with their own sets of weights and prototypes.
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6. EXPERIMENTS

The following experiments use context-dependent phonetic
hidden Markov models based on Genones [12]: each state
cluster shares a common set of Gaussians, while the mixture
weights are state-dependent.

The test-set is a collection of 9600 utterances of Italian
telephone speech spanning several tasks, including digits,
letters, proper names and command lists. The features are
9-dimensional MFCC with∆ and∆∆. The system com-
prises 3400 triphones and a total of 48000 Gaussians trained
using 89000 utterances. The accuracy is evaluated using a
sentence understanding error rate, which measures the pro-
portion of utterances in the test-set that were interpreted in-
correctly.

Table 1 shows the error rates for three baseline mod-
els and the mixture of inverse covariances (MIC) approach.
Table 1 (4,5) shows the error rates for the single-class, sin-
gle-block approach. Without any increase of the number
of Gaussian-dependent parameters, the accuracy can be im-
proved by about 8%. Only 9 Gaussian-dependent parame-
ters are required to match the accuracy of the baseline diag-
onal system in Table 1 (1).

Table 1 (6) uses one distinct set of prototypes for each
of 30 phonetic classes. The much larger improvement sug-
gests that a class-based approach is an efficient alternative
to using large mixtures to get closer to the performance of a
full-covariance model.

Table 1 (7,8) shows the error rate using the 2 block-
diagonal model (cepstra +∆, and∆∆), with the number of
Gaussian-dependent parameters being comparable to that of
Table 1 (2,3). The results are uniformly better than the sin-
gle-block model although the total number of parameters in
the system is smaller. Following the argument of Section 5,
the block-diagonal system with 2 blocks and respectively 6
and 3 prototypes for each block should be similar to a sys-
tem with about6 × 3 = 18 “full” prototypes. In fact, the
single-block model that performs the closest to this config-
uration has 15 prototypes. This suggests that a block diag-
onal mixture is the most appropriate when using a limited
number of Gaussian-dependent parameters.

7. SUMMARY

A low-complexity approximation to full and block-diagonal
covariance Gaussian mixture models was introduced, along
with robust maximum likelihood estimation algorithms to
compute the parameters of this model. When used in the
context of a GMM acoustic model for speech recognition,
it leads to significant accuracy gains over a typical diagonal
covariance model at little cost in complexity.
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