
MAXIMUM LIKELIHOOD TRAINING OF SUBSPACES FOR INVERSE COVARIANCE
MODELING

K. Visweswariah, P. Olsen, R. Gopinath, S. Axelrod

IBM T. J. Watson Research Center, Yorktown Heights, NY - 10598
{kv1, pederao, rameshg, axelrod}@us.ibm.com

ABSTRACT
Speech recognition systems typically use mixtures of diagonal
Gaussians to model the acoustics. Using Gaussians with a more
general covariance structure can give improved performance; EM-
LLT [1] and SPAM [2] models give improvements by restricting
the inverse covariance to a linear/affine subspace spanned by rank
one and full rank matrices respectively. In this paper we consider
training these subspaces to maximize likelihood. For EMLLT ML
training the subspace results in significant gains over the scheme
proposed in [1]. For SPAM ML training of the subspace slightly
improves performance over the method reported in [2]. For the
same subspace size an EMLLT model is more efficient compu-
tationally than a SPAM model, while the SPAM model is more
accurate. This paper proposes a hybrid method of structuring the
inverse covariances that both has good accuracy and is computa-
tionally efficient.

1. INTRODUCTION

State of the art speech recognition systems use Hidden Markov
Models with context dependent states and Gaussian Mixture Mod-
els for each state. The model for state s is

P (x|s) =
X

g∈G(s)

πgN(µg , Σg),

where x ∈ IRd and G(s) is the set of Gaussians modeling state s.
The covariances Σg are typically assumed diagonal for reasons of
efficient Gaussian evaluation, compact storage and robust param-
eter estimation. Maximum Likelihood Linear Transform (MLLT)
[3] or Semi-tied Covariances [4] models improve the performance
while maintaining the computational advantages of diagonal co-
variance modeling. The recently proposed EMLLT and SPAM
models restrict the inverse covariances Pg = Σ−1

g (precisions)
to an affine subspace shared by all Gaussians.

In the EMLLT model [5, 1] the precision matrix is spanned by
rank one matrices:

Pg =
D

X

k=1

λgkakaT
k = AΛgAT ,

where A is a d × D matrix and Λj is diagonal of size D × D. In
[1] the basis {akaT

k } is obtained by training MLLT matrices [3, 4]
for various classes of phonemes and then stacking them on top of
each other. Note that for the model to be well defined we need
Pg to be symmetric positive definite for all Gaussians. In order
to ensure that Pg > 0 we need at least d linearly independent
basis vectors akaT

k , i.e., D ≥ d. Furthermore λgk’s have to be
chosen such that Pg > 0. Note that imposing λgk > 0 trivially
ensures Pg > 0. However, allowing λgk to be negative can provide
improved performance [1]. In this paper we impose no artificial

constraints on λgj . Given the basis {akaT
k }, λgj can be estimated

as in [1, 2].
The SPAM model [2] generalizes the EMLLT model by re-

stricting the means and the precision matrices of the Gaussians to
a general affine subspace. In this paper we only consider the case
where the precision is constrained to be in a affine subspace of the
space of all symmetric matrices and the means are unconstrained.
Thus the precision of a Gaussian g is of the form

Pg = S0 +
D

X

j=1

λgjSj .

In [2]the basis was obtained by optimizing a quadratic approxima-
tion to the Q function. Notice that EMLLT is a special case of the
SPAM model with S0 = 0 and Sk = akaT

k .
For a fixed subspace dimension D a SPAM model provide im-

proved performance over an EMLLT model. However, the likeli-
hood computation for the SPAM model is more expensive for the
following reason. In both cases the total computation cost can be
divided into an up front cost shared by all Gaussians and a per
Gaussian cost. The per Gaussian computational cost is the same
for both models. The up front computation is the evaluation of
(xT ak)2 (O(d) operations) for EMLLT as compared to xT Skx
(O(d2)) for SPAM. If all the Gaussians are evaluated then this
additional cost is negligible. However, in most practical systems
since only a fraction of the total number of Gaussians are evalua-
tion on each feature vector x, this cost may become significant. To
address this issue we propose a hybrid EMLLT/SPAM model. The
basic idea is to restrict the Si’s themselves to be in a space spanned
by K rank one matrices K > D:

Si =

K
X

k=1

ukiakaT
k (1)

The contribution of this paper is a set of algorithms for the
maximum likelihood training of subspaces for inverse covari-
ance modeling; specifically for EMLLT, SPAM and hybrid EM-
LLT/SPAM models. To estimate the basis parameters in these
models one can proceed as in standard Gaussian Mixture Model
estimation via the EM algorithm. The key difference is that in
the M-step, the Q function maximization does not have a simple
closed form solution. Furthermore, a direct application of a gen-
eral purpose numerical optimization package is not feasible be-
cause the precision matrices have to be positive definite. The posi-
tive definiteness constraint for the SPAM model can be handled as
in [2]. For the EMLLT model imposing this constraint is more in-
volved because the basis is quadratic in the parameters A. Solving
this problem not only allows for the ML training of EMLLT mod-
els but also allows for the ML training of hybrid SPAM/EMLLT
models defined in (1). The outline of the rest of the paper is as fol-
lows. In Section 2 we outline numerical optimization techniques

I - 8960-7803-7663-3/03/$17.00 ©2003 IEEE ICASSP 2003

➠ ➡

that we use and describe the function we need to optimize. In Sec-
tions 3, 4 and 5 we describe our solutions to the problem of ML ba-
sis estimation for EMLLT, SPAM and hybrid EMLLT/SPAM mod-
els respectively. We present our experimental results in Section 6.

2. NUMERICAL OPTIMIZATION AND ML PARAMETER
ESTIMATION

Consider optimization of a real valued function f on IRn. Numeri-
cal optimization algorithms (steepest descent, conjugate gradients,
BFGS and limited memory BFGS) algorithms typically work as
follows: starting at a point x one finds a search direction v and
then optimizes g(t) = f(x + tv) over t > 0. To find the search
direction v the algorithms need evaluation of the gradient of f . In
each iteration we need to calculate the function and the gradient
at the current point; and then evaluate the function (and possibly
its derivative) a few times along v. The efficiency of using generic
optimization techniques depends not only on computing the func-
tion and it’s gradient efficiently but also on being able to evaluate
f(x + tv) and its derivative for different t given a fixed x and
v. All experiments reported in this paper use an open source opti-
mization package adapted to our needs [6]. The optimization algo-
rithm used is a version of the limited memory BFGS algorithm [7]
with the More-Thuente [8] line search algorithm. The problems
we deal with here are constrained by the fact that the precision
matrices have to be positive definite. As in [2] we ensure that we
satisfy the constraints by finding, for a given x and v, a maximum
step size B and restricting the line-search algorithm to the interval
0 < t < B. For all our functions, as a by-product of finding B,
we can also quickly calculate the function and its derivative along
a line. In each function optimization a special implementation of
f(x + tv) and its derivative is provided.

We now introduce the optimization problem that we solve in
this paper. Let Θ = (S0, {Sk}, {λg}, {µg}, {πg}) be the set of
parameters in our Gaussian Mixture Model. Given labeled train-
ing data (xt, st) our goal is to train all parameters to maximize the
likelihood of the training data. We use the EM algorithm as direct
optimization of the likelihood function would be prohibitively ex-
pensive. Given a current set of parameters Θ̂ the E-step of the EM
algorithm gives the Q function that we need to optimize over Θ:

Q(Θ, Θ̂) =
X

s

N(s)
X

g∈G(s)

π̃gG(Pg, Σg) + π̃g log πg . (2)

In the above equation

G(P, Σ) = log(detP) − trace(ΣP),

π̃g =
1

N(s(g))

X

t:st=s(g)

γt(g),

γt(g) = γt(g, Θ̂) =
π̂gp(xt|g, s(g), Θ̂)

p(xt|s(g), Θ̂)
,

Σg = Σ̃g + (µg − µ̃g)(µg − µ̃g)T ,

µ̃g =
1

n(g)

X

t:st=s(g)

γt(g)xt,

and

Σ̃g =
1

n(g)

X

t:st=s(g)

γt(g)(xt − µ̃g)(xt − µ̃g)
T .

Here s(g) is the HMM state that Gaussian g belongs to,
N(s) is the number of samples associated with state s and

n(g) = N(s(g))π̃g. Maximizing this function with respect to
({µg}, {πg}) and substituting optimum values back in (2) we get

R(S0, {Sk}, {λg})
∆
=

X

g

n(g)G(Pg, Σ̃g).

For training the subspaces we start with statistics n(g) and Σ̃g and
optimize R(S0, {Sk}, {λg}). Since we are hoping to approximate
a full covariance model the statistics n(g) and Σ̃g are collected
using a full covariance model. Although we can optimize over
S0, in all cases reported in this paper, we either fix S0 = 0 or
S0 = (

P

g
n(g)Σ̃g/N)−1. To optimize R we alternate between

optimizing over {λg} for fixed {Sk} and vice versa. Optimizing
R(S0, {Sk}, {λg}) w.r.t {λg} for fixed {Sk} breaks up into in-
dependent problems of maximizing G(Pg , Σ̃g) for each Gaussian
g. Although for the rank-one case we could use the coordinate as-
cent technique described in [1] (which has an elegant closed form
solution), we choose to use a technique described in [2]. We also
note that in performing the line-search in all our optimizations we
have a precision matrix P (t) that is a continuous function of t and
P (0) that is guaranteed to be positive definite. Then P (t) is posi-
tive definite for all 0 <= t < B where B is the smallest positive
solution of det(P (t)) = 0. In Sections 3, 4, and 5 we discuss op-
timizing R(S0, {Sk}, {λg}) for different parameterizations of the
{Sk}.

3. ESTIMATION OF RANK-ONE BASES

In this section we describe optimization of R(S0, {akaT
k }, {λg})

with respect to A. We note at the outset that the objective func-
tion is not concave in A. We consider two different options: One
where we optimize over aj (the jth column of A) fixing all other
columns and cycling through the columns and another where we
optimize all columns of A jointly. In general we expect the joint
optimization to work better than optimizing one element at a time.

3.1. Optimizing one column

Consider optimizing R(S0, {akaT
k }, {λg}) w.r.t a particular col-

umn aj . The function we need to maximize is

R(aj) ∼=
X

g

n(g)(log det(P
′

g + λgjaja
T
j)) + aT

j Tjaj ,

where
Tj =

X

g

n(g)λgjΣ̃g

and P
′

g = S0 +
P

k 6=j λgkakaT
k . We use the symbol to ∼= to mean

that the two quantities are equivalent given the parameters we are
optimizing w.r.t. If P

′

g were guaranteed to be invertible we could
write

det(P
′

g + λgjaja
T
j) = det(P

′

g)(1 + λgja
T
j P

′−1
g aj),

and this would give us an efficient way of restricting the line search
and of evaluating the function along a line. Since we cannot as-
sume P

′

g is invertible things are slightly more involved. We can
assume that we have a set of parameters (S0, {akaT

k }k 6=j , {λg})

and an initial point âj such that P̂g (the current precision matrix)
is positive definite for all Gaussians. We can use the Sherman-
Morrison-Woodbury formula as follows:

det(P
′

g + λgjaja
T
j) = det(P̂g + λgj(aja

T
j − âj â

T
j))

∼= (1 − λgj â
T
j P̂−1

g âj)(1 + λgja
T
j P̂−1

g aj)

+ λ2
gj(a

T
j P̂−1

g âj)
2. (3)

I - 897

➡ ➡

(3) allows us to perform the optimization efficiently. Both the
function R(aj) and its gradient can be evaluated in O(d2) opera-
tions per Gaussian assuming that P̂−1

g is computed. We calculate
P̂−1

g once at the start of the optimization over A. We update P−1
g

after optimizing the column aj . This is achieved efficiently using
the Sherman-Morrison-Woodbury formula. Using (3) evaluating
R(aj + tv) and its gradient is extremely efficient. The maximum
step size that we can take from the current point âj in a given di-
rection v (and still ensure positive definiteness) can be determined
by solving a quadratic equation in one variable for each Gaussian.

3.2. Joint optimization

To optimize R(S0, {akaT
k }, {λg}) as a function of A we need to

be able to limit the line search to ensure positive definiteness of
the precisions i.e given the current point Â and a search direction
B we need to find the smallest positive solution of

det(P̂g + (BΛgÂT + ÂΛgBT)t + BΛgBT t2) = 0. (4)

This problem is a well studied problem [9] called the quadratic
eigenvalue problem. We solve it by using the fact [9] that the
solutions of (4) are the same as the eigenvalues of the following
generalized eigen system of size 2d:

„

−P̂g 0
0 I

«

− t

„

(BΛgÂT + ÂΛgBT) BΛgBT

I 0

«

.

Solving this generalized eigenvalue problem allows us to perform
evaluations of the function and derivative along the search di-
rection efficiently. The final piece we require is the gradient of
R(S0, {akaT

k }, {λg}) w.r.t A:

X

g

n(g)(P̂−1
g − Σ̃g)AΛg.

3.3. Initialization

To initialize our basis we used two methods. One is to start with
the EMLLT basis obtained by stacking MLLT matrices as in [1].
We can then take all λgk to be some small positive number which
guarantees a positive definite starting point. The other alternative
is to start from an MLLT basis or from a positive definite S0 and to
incrementally add vectors to this starting point. Starting with S0 6=
0 we get an affine subspace spanned by rank-one matrices which
is slightly more general than the standard EMLLT model where
S0 = 0. Let us assume we have a basis (and the corresponding
λgj) of size D and we want to increase the size to D+1. A closed
form solution for λg(D+1) in terms of aD+1 is given by:

λg(D+1) =
1

aT
D+1Σ̃gaD+1

−
1

aT
D+1P̂

−1
g aD+1

.

This solution for λg(D+1) results in a positive definite precision
for any aD+1. We can substitute this solution back into R and use
an unconstrained optimization package to optimize the resulting
function.

4. ESTIMATION OF SPAM BASES

The problem of optimizing SPAM bases given fixed coefficients
is a concave problem and is formally equivalent to the problem of

solving for the coefficients λg given the basis. Given a search di-
rection {Bk}, to limit the line search, we need to find the smallest
positive root of

det(P̂g + t
X

k

λgkBk) = 0

for each Gaussian g. This requires the solution of a generalized
real symmetric eigenvalue problem for each Gaussian. Once the
eigenvalue problem is solved line-searches can be performed effi-
ciently. To initialize the training of SPAM bases we start with the
basis obtained using the technique in [2]. There an approximation
to the function R is found that results in an eigenvalue problem (of
size d ∗ (d + 1)/2) to be solved to find the basis.

5. HYBRID BASES

To optimize R(S0, {Sk}, {λg}) when Sk are given as in (1), we
alternate between optimizing the A, U and {λg}. U is a K × D
matrix with elements uki. For fixed U and {λg} A can be opti-
mized by the methods described in Section 3. Optimization over U
is essentially the same as the problem of optimizing a SPAM basis
and is handled as described in Section 4. We initialize the basis by
starting with S0 = (

P

g
n(g)Σ̃g/N)−1 and growing the rank-one

basis to the desired size K as described in Section 3.3. We then
estimate the coefficients in this rank one basis of size K and ini-
tialize U to be the D principal components of the K dimensional
coefficient vectors.

6. EXPERIMENTAL RESULTS

All experiments reported on in this paper were conducted on a
test database collected in a car [1]. We report word error rates
on a test set comprised of small vocabulary grammar based tasks
(addresses, digits, command and control) and consists of 73743
words. Data for each task was collected at 3 speeds: idling, 30mph
and 60mph. All acoustic models reported on here were built on
d = 52 dimensional feature vectors. The 52 dimensional vec-
tor was obtained by projecting down from nine cepstral vectors
(each thirteen dimensional) spliced together. The projection was
obtained using LDA. The size d = 52 was chosen because the
best full-covariance model performance was obtained at this size
[10]. The acoustic model used separate digit phones with a total of
89 phones. All the acoustic models had a total of 10253 Gaussians
distributed across 680 context dependent states using BIC based
on a diagonal covariance system.

For all experiments acoustic models were built from a fixed
Viterbi alignment of the training data using a baseline diagonal
covariance model. To train the basis, we first collected the statis-
tics {n(g),Σg} using a full covariance model. Once the basis is
trained we then train models in that fixed basis via the EM algo-
rithm from the aligned data using the methods described in [2] and
[5].

To just train the basis efficiently we could use statistics
{n(g), Σg} not for all Gaussians but for a smaller set that is
representative of the covariances that we need to model. We
experimented with using one Gaussian per state by combining
the statistics for all Gaussians belonging to that state and using
statistics {n(s), Σs} where n(s) =

P

g∈G(s) n(g) and Σs =
P

g∈G(s) n(g)Σg . We trained an EMLLT basis with D = 2d us-
ing each of these sets of statistics. The two bases, trained on state
level statistics and the full statistics, resulted in models with word
error rates of 2.11 and 2.04 respectively. We felt this difference
was enough to merit training all bases on the full statistics since
this was not prohibitively slow.

I - 898

➡ ➡

For the training of the EMLLT basis we next compared the
one-column-at-a-time approach described in Section 3.1 with the
joint optimization method described in 3.2: the two models had
WER’s of 2.04 and 2.03 respectively. Both bases were trained
from the same initial point and for the same number of iterations.
For a fixed number of iterations the joint method gives a better
value of likelihood than the one-column-at-a-time approach. In our
implementation the joint method was slower than the one-column-
at a-time approach. Therefore, we used the latter approach in all
our other experiments.

Table 1 compares EMLLT models with ML trained bases
to those obtained by stacking MLLT matrices for various phone
classes. The latter method is restricted to generating basis sizes D
that are multiples of the feature space size d. Preliminary experi-
ments on the method used to generate the phone classes (manual
vs data-driven) showed no significant differences in performance.
We see that ML training of bases essentially reduces the number of
parameters required to model the covariance by half. The last row
in the table is the performance of a full covariance model. The first
row is an MLLT model so both methods of training are the same.

D Stacking ML training
d 2.67 2.67
2d 2.35 2.04
4d 2.01 1.81
8d 1.82 1.65

15d 1.64 -
26.5d 1.58 -

Table 1. WER comparison of EMLLT bases obtained by stacking
to ML trained ones for various basis sizes

The next table shows the flexibility (we can now have D <
d) and benefits of using an affine subspace in the rank-one case.
With D = d the standard MLLT system in Table 1 is about 10%
worse than the D = d affine rank-one subspace system in Table 2.
Using an affine subspace incurs no extra cost in the evaluation of
Gaussians.

D = d D = .5d D = 0.25d
2.42 2.89 3.05

Table 2. WER of models with precisions modeled in affine rank
one spaces

Table 3 compares ML training of SPAM bases to bases trained
via the modified Frobenius norm as outlined in [2]. We see that the
ML training method improves over the modified Frobenius method
only for very small D. The last row reports results by gathering
statistics with the models reported on in the last but one row and
performing a further round of basis training. The eigenvalue prob-
lem to be solved for the modified Frobenius method can be solved
much faster than the ML training procedure and hence it is to be
preferred unless D is quite small.

D Modified Frobenius ML training
0.75d 2.05 1.99
0.5d 2.25 2.23
0.25d 2.70 2.50

0.25d (iter 2) 2.64 2.47

Table 3. WER comparison of SPAM bases obtained by using the
modified Frobenius norm to ML trained ones

Finally Table 4 reports on a hybrid basis that we built using the
technique described in Section 5. We see that this basis achieves
the performance of a SPAM basis of the same size. The advantage
of using a hybrid basis is one of computational cost. With d = 52
and D = 39 as in our case the cost of evaluating about 1500 Gaus-
sians (1500 × 91) is comparable to the up front cost of evaluating
xT Skx (approx. 1400 × 39). Using a hybrid basis with K = 208
cuts the up front cost by a factor of 3.

D ML trained SPAM Hybrid (K=4d)
0.75d 1.99 2.01

Table 4. WER comparison of a SPAM basis to a hybrid
SPAM/EMLLT basis

7. CONCLUSIONS

EMLLT and SPAM models allow for flexible sharing of parame-
ters for modeling the covariance of Gaussians. These models im-
prove over diagonal MLLT models with similar number of param-
eters ([2, 5]). In this paper we presented techniques for Maximum-
Likelihood training of EMLLT and SPAM bases. For EMLLT
models we report significant improvement in performance over
EMLLT models trained using the techniques in [5]. For the case
of SPAM ML training only gives gains at small basis sizes over
the method presented in [2]. In this paper we also proposed a hy-
brid EMLLT/SPAM model that gives the performance benefits of
SPAM models while significantly lowering the up front computa-
tion involved in using SPAM models.

8. REFERENCES

[1] P. Olsen, R. Gopinath, “Modeling inverse covariance matri-
ces by basis expansion,” Proceedings of ICASSP, 2002.

[2] S. Axelrod, R. Gopinath, P. Olsen, “Modeling with a sub-
space constraint on inverse covariance matrices,” Proceed-
ings of ICSLP, 2002.

[3] R. Gopinath, “Maximum likelihood modeling with gaus-
sian distributions for classification,” Proceedings of ICASSP,
1998.

[4] M. J. F. Gales, “Semi-tied covariance matrices for hidden
markov models,” IEEE Transactions in Speech and Audio
Processing, 1999.

[5] P. Olsen, R. Gopinath, “Modeling inverse covariance matri-
ces by basis expansion,” IEEE Transactions in Speech and
Audio Processing, Submitted.

[6] M. S. Gockenbach, W. W. Symes , “The Hilbert Class Li-
brary,” http://www.trip.caam.rice.edu/txt/hcldoc/html/.

[7] D. C. Liu, J. Nocedal, “On the limited memory bfgs method
for large scale optimization problems,” Mathematical Pro-
gramming, vol. 45, pp. 503–528, 1989.

[8] More, Thuente, “Line search algorithms with guaranteed suf-
ficient decrease,” ACM TOMS, vol. 20, no. 3, pp. 286–307,
1994.

[9] F. Tisseur, K. Meerbergen, “The quadratic eigenvalue prob-
lem,” Society for industrial and applied mathematics, vol.
43, no. 2, pp. 235–286, 2001.

[10] S. Axelrod, R. Gopinath, P. Olsen, K. Visweswariah, “Di-
mensional reduction, covariance modeling and computa-
tional complexity in asr systems,” Submitted ICASSP, 2003.

I - 899

➡ ➠

