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ABSTRACT

Recently there has been interest in the use of classifiers based on
the product of experts (PoE). PoEs offer an alternative to the stan-
dard mixture of experts (MoE) framework. This paper presents
a particular form of PoE, the product of Gaussians (PoG), within
an hidden Markov model framework. Training and initialisation
procedures are described for this PoG system. In addition, the re-
lationship of PoG to standard multiple stream systemsis explored.
The PoG system performance is examined on the SwitchBoard
task and is compared to standard Gaussian mixture systems and
multiple stream systems.

1. INTRODUCTION

Mixture of Gaussians (MoG) are commonly used as the state rep-
resentation in hidden Markov model (HMM) based speech recog-
nition. These Gaussian mixture models are easy to train using EM
techniques and are able to approximate any distribution given a
sufficient number of components. However, the number of param-
eters that can be effectively trained is restricted by the quantity
of training data. This limits the ability of these systems to model
highly complex distributions. Severa alternatives have been de-
vised to overcome this limitation. In particular, schemes that are
based on distributed representations, such as factorial HMMs [1,
2], are popular. One such approach is multiple stream model-
ing [3]. Here, the feature vector is assumed to consist of indepen-
dently modeled streams. Observations from these streams are con-
catenated together to form the feature vector. Performance for this
form of model is limited by the independent stream assumption
and to date multiple stream systems have had very limited success
when applied to large vocabulary speech recognition tasks.

An aternative distributed representation is the products of ex-
perts (PoE) [4] framework. Here a set of experts are used to model
the feature vector. The output from all the experts are producted
together to form the system output. This output from PoE systems
can be thought of as an intersection of all the individual experts.
In contrast, the output from the standard mixture of experts (MoE)
system, of which the MoG is one example, is the union of all the
individual experts. For aMoE system, M, composed of S experts
the output likelihood may be expressed as

p(o|M) Zc“ 0| M) 1)
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where ¢'®) isthe prior for expert M. For thisto be avalid PDF
35, ¢®) = 1. Theequivalent output likelihood for a PoE system
may be expressed as

S
p(oe| M) 7 H (0] M) 2

/ Hp (ol M®)do ®

where theintegral isover the d-dimensional feature-space. Z isthe
normalisation term required to yield avalid PDF. PoEs have previ-
ously been investigated for time varying data, classifying character
strings, using discrete HMMs [5].

Thetraining of MoE systemsisnormally relatively simple and
extensive use is made of the EM agorithm. However for the PoE
system the training is more complex, mainly as aresult of the nor-
malisation term, leading to the use of various approximate training
schemes [4]. This paper investigates systems where the individual
experts are Gaussian or MoG. Products of these experts are used to
model the states of aHMM. Using thisform of expert, the training
is dramatically simplified from the general PoE case. In addition,
thisform of model is, under certain restrictions, related to multiple
stream systems.

Z

2. PRODUCT OF GAUSSIANS SYSTEM

This section details the product of Gaussians (PoG) model. Two
forms of representation are discussed. The first uses MoG as the
experts. The second form, and the one evaluated in this paper,
considers normalised versions of the product of individual compo-
nents from the MoG experts.

Consider a MoG for each stream expert. In this case, equa
tion 2 may be expressed as

s [ =)
olr = 5 11 (Z SN (o0, 2(5))> @

m=1

where M), ¢, u(*), and B¢ denote the number of compo-
nents in stream s, the prior, mean and covariance matrix of com-
ponent m of stream s. By expanding the product of sums into a
sum of products, the producted space, this can be rewritten as

MM M) g
p(oe|M) = Z Y Hc(s)/\/< (S),zgﬂ) ®)
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As a product of Gaussian distributions itself has the form of a
Gaussian distribution, this may be rewritten in terms of Gaussians,
meta-components, in the producted space.

D) M (S)
p(o¢| M) = Z Z cm KN (045 s Zm)- (6)
m1 1 mg=1

wherem = [ my ms ]', m, specifies the component
from stream s. K, is an observation-independent normalisation
and can be expressed as

Km — (271-)§|2"’1|E (7)
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The mean, covariance matrix and prior of each meta-component
m may be expressed as

S
By = Zm (22521 luﬁsi) ®
s=1
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Cm = Hc(s) (10)

In this form, the effective number of components, M, in the PoE
model isthe number of possi ble combinations of components from
each MoG (M = [[5_, M)). The normalisation term can be

written as Z = ZM“) MY K.

An dternative form of modsel uses a normalisation term for
each meta-component m rather than at the product of MoG level.
This is the product of Gaussians (PoG) system examined in this
paper. As PoG will be used to model the state distributions for
an HMM system, the likelihoods will now be conditioned on the
state of the model (the dependence on the model parameters will
be implicit). The likelihood for state ¢; may be written as

M) M(S)
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where K, isthe normalisation term for the meta-component given
in equation 6. By using this form of normalisation it possible to
closely relate this form of model to multiple stream systems.

The effects of using a PoG distributed representation may be
split into two distinct parts. Thefirst isthat the position in acoustic
space of the meta-component m isassumed to bewell modeled us-
ing the means and variances derived in equations 8 and 9. Second,
the prior for component m is close to the product of priors given
in equation 10. These two aspects of the distributed representation
may be considered, and evaluated, separately.

The maximum likelihood (ML) PoG system training is more
complicated than that for a standard HMM or multiple stream sys-
tem. To estimate the producted means and variances, ageneralised

EM formulation is used. The complete data set for the auxiliary
function is based on the observations and the posterior probability
at time ¢ of a meta-component m, given the current model param-
etersand the all the observations, ’_th) A generalised EM frame-
work is used as there are no closed form solutions to estimate the
means and variances, so gradient descent schemes are used. For
further details of thistraining see [6]. Using the expressionsin [6]
requires statistics to be accumulated for each meta-component. It
isthen possible to guarantee that the auxiliary function increases at
each step. However, this makes training systems with large num-
bers of streams, or components per stream, impractical. Alterna-
tively, it is possible to use more general gradient descent learning
schemes where it is possible to store updates with the individual
stream components. Thiswill be investigated in future work. An
important issue in training POE systemsis initialisation. This will
be discussed in section 3.

In contrast to the means and variances, the ML-estimate of
the priors have simple closed form solutions. When the meta-
component prior is determined using equation 10, the prior for
component m of stream s may be estimated as

(s) Zt 1 Z{m ms=m} ’y(m)
m (m)
Zt 1 2m

where the summation in the denominator isover all meta-components
of the state. Rather than assuming that the form of equation 10
gives a good estimate of the prior for the meta-component, the
meta-component prior can be estimated directly. This will be re-
ferred to as the ML estimate of the meta-component prior (in con-
trast to the distributed estimate). This prevents the distributed rep-
resentation incorrectly assigning high priors to regions of the fea-
ture space unobserved in the training data. The ML estimate of
cm USes the standard prior estimate, but now based on the meta-
components. This ML-estimate for the meta-component priors can
be applied to any form of distributed representation. The statistics
required to be stored for this estimate are the accumulated poste-
rior counts, one float per meta-component. This is feasible even
for relatively complex systems.

(12)

3. MULTIPLE STREAM SYSTEMS

This section describes multiple stream systems and relates them
to the PoG system described in the previous section. The form
of multiple stream system considered here is the synchronous in-
dependent stream model implemented in HTK[3]. This form of
multiple stream model makes the assumption that, given the state,
the observations from each of the streams are independent of one
another. This may be expressed as

s ()
plodla) = H(Zc“W(“) “%z&f))) (13)

i
where o, = [ o) ... o) | Inasimilar fashion to the

PoG system, this may be expressed in the producted space given
inequation 11. The meta-component means and variances are now

uéﬂ =B .. o
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The total number of effective full-dimensional Gaussians is then
the number of possible combinations of stream elementsand isthe
same as the PoG system. The prior for an effective component is
given by the product of the individual stream component priors,
shown in equation 10.

The relationship between the PoG system and multiple stream
systems is best illustrated by an example. Consider a two stream
PoG system where the covariance matrices of component 1 of the
two streams are given by

(1) 2
1y _ | = 0 2_| o 0
2l - |: 0 0,21 :| ) 21 - |: 0 E(Z) (15)

For the situation where o> = oo, using equation 9 to compute the
meta-component variance yields
=® 0
Sy = { 0 n® (16)

Thus when the “ cross-stream” variances for a PoG system are very
large, a PoG system becomes the same as a multiple stream sys-
tem. Similarly, the mean of PoG will have same form as the mul-
tiple stream mean.
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Fig. 1. The circles show one standard deviation contours of each
Product of Experts. The products shift as off-stream variance is
reduced.

Figure 1 shows the effect of varying the value of ¢, the cross-
stream variance, on the meta-component positions. The figure
shows two MoG experts, for stream 1 the means are at [2 2]’ and
[-2-2)" and for stream 2 at [2-2]' and [-2 2]'. The “within-stream”
variances are 1. Thetop left plot has o = 1000 and the resultant
meta-components are the same as a multiple stream system. As
o decreases the meta-components are no longer aligned with the
axis. For o2 = 1 the components are rotated by almost 45 degrees
compared to the > = 1000. The PoG system can be seen to be

more powerful than the multiple stream system, as there is no as-
sumption about the meta-components aligning with the “axis’ of
the two streams. However, there is an increase in the number of
model parameters, since each expert in a PoG system models the
compl ete feature vector.

One issue in training a PoG system is how to appropriately
initialise the system. Various approaches are possible [4]. For this
work the relationship between the PoG system and the multiple
stream system is used. A multiple stream system is built by par-
titioning the feature vector. This multiple stream system is then
converted into a PoG system by “padding” the covariance matrix
with high cross-stream values'. This is similar to the subspace
initialisation in [4].

4. RESULTS

The performance of the PoG and multiple stream systems were

evaluated on astandard large-vocabul ary speaker-independent speech

recognition task. Hub5, or SwitchBoard. Thisis atelephone band-
width spontaneous speech recognition task. The acoustic train-
ing datais obtained from two corpora: SwitchBoard-1 (Swb1) and
Call Home English (CHE). The full training corpus consists of an
265 hour training set, 4482 sides from Swb1 and 235 sides from
CHE. For the experiments performed in this section a subset of
this was used. A total of 68 hours was chosen to include al the
speakers from Swhl in h5train00 as well as a subset of the avail-
able CHE sides. 862 Swhb1 sides and 92 CHE sides were used in
this subset. This is the h5t r ai n00Osub training set described
in [7]. The speech waveforms were coded using perceptual lin-
ear prediction cepstral coefficients derived from a Mel-scale fil-
terbank (MF-PLP) covering the frequency range from 125Hz to
3.8kHz. A total of 13 coefficients, including co, and their first and
second order derivatives were used. Cepstral mean subtraction and
variance normalisation were performed for each conversation side.
Vocal tract length normalisation (VTLN) was applied in both train-
ing and test. A gender-independent cross-word-triphone diagonal-
covariance mixture-Gaussian tied-state HMM system was built
All results are quoted on a three hour subset of the 2001 de-
velopment data, referred to as devOlsub. This has been found
to be agood predictor of system performance. For al recognition
experiments single pass decodes were performed, rather using lat-
tices, to avoid cross system effects. A trigram language model was
used built using the language model training data described in [7].

Number of Components

System | 2 [ 4 | 6 [ 8 | 10 | 12
std 46.1 | 43.7 | 420 | 40.7 | 39.3 | 39.1
stm 46.0 | 438 | 431 | 424 | 421 | 420

Tablel. dev01sub SwitchBoard performance using MoG (st d)
and three-stream multiple-stream (st n) systems.

Table 1 shows a comparison of a standard MoG HMM sys-
tem with a 3-stream multiple stream system, the streams were the
static, first and second derivative parameters. For small numbers
of components there was little performance difference between the
two systems. However, as the number of components was in-

1n practice a constant times the inverse of the variance floor was used.
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creased the performance difference became large. The standard
system significantly outperformed the multiple stream system.

10 20 30 ) 50 60 10 20 30 ) 50 60
Component Component

Fig. 2. Effective component priors from the multiple stream sys-
tem (left) and ML meta-component priors (right) for the meta-
components of the 4-component 3-stream system

Figure 2 shows, on the left-hand-side, the meta-component
priors and, on the right-hand-side, the ML estimated priors for a
state of the 4-component multiple stream system. Using the stan-
dard stream priors there is a clear structure. However, the ML
priors have no such structure. This indicates that the priors are
not well modelled using the distributed representation. The per-
formance of the system using the ML meta-component priors was
43.5% error rate compared to 43.8% for the multiple stream sys-
tem. It should be noted that there is an increase in the number
of model parameters. The standard 4-component 3-stream system
has 9 free parameters per state for the weights compared to 63 pa-
rameters for the ML weights. If al the model parameters were
trained using ML priorsthe error rate dropped to 43.0%.

Number || M || Word Error
Comps. Rate (%)
2 8 43.1
3 27 41.3
4 64 409

Table 2. dev01lsub SwitchBoard performance using a 3-stream
PoG systems, M indicates the effective number of components

In preliminary experiments similar gains were observed using
ML meta-component priors for the PoG system as the multiple
stream system, ML meta-component priors were therefore used
for al PoG experiments. Table 2 shows the performance of 3-
stream PoG systems. The 2-components per stream system gave a
43.1% error rate compared to 46.1% for the standard MoG system.
Though a significant reduction in error rate was obtained the num-
ber of model parameters in the PoG system is approximately three
times that of the MoG system. For the 4-components per stream
system the error rate of the PoG system was 40.9%. Again this
is significantly better than the MoG system performance, 43.7%.
It is also better than the multiple stream system using ML meta-
component priors, 43.0%. This illustrates that significant use is
being made of the cross-stream variances. This is not surprising
since the performance of the multiple stream systems indicate that
the independent stream assumption is poor for speech recognition
with MF-PLP parameters.

If the total number of model parameters is considered, rather
than the components per stream, the 4-component PoG system
is equivalent to the 12-component MoG system, which had an
error rate of 39.1%. The PoG system performance was signif-
icantly worse than the MoG performance for approximately the
same number of model parameters. However, comparing the av-
erage training data log-likelihoods of the two systems, the PoG
system is slightly higher, —66.8, compared to the MoG system,
—67.1. The 4-component PoG system better models the training
data, though it is not a better model for classification.

5. CONCLUSIONS

This paper has described a new form of distributed representa-
tion, the PoG model, based on the PoE framework. Techniques for
training and initialising this new model are presented. In addition,
the relationship between thismodel and amultiple stream model is
described. Thisnew model iscompared to standard MoG and mul-
tiple stream state-representations for HMM-based speech recogni-
tion. A standard speech recognition task, SwitchBoard, was used
for the evaluation. As expected, the performance of the multiple
stream system became worse than that of the MoG system as the
number of components increased. Part of this degradation in per-
formance was shown to be due to the poor representation of the
priorsin the system. Additional experiments on larger systems are
required to further evaluate this effect. The performance of the
PoG system was better than that of the equivalent number of com-
ponents per stream MoG or multiple stream system. However, the
PoG system has more parameters. Thelargest PoG system trained,
4-components per stream, had a performance significantly worse
than that of the best, 12-component, MoG system. Future work
will investigate building larger PoG systems to see whether as the
number components increase the performance exceeds the stan-
dard MoG system. There are a number of issues that still need
to be resolved for the PoG system. As well as efficient training
and initialisation schemes, there is the need for efficient decoding
schemes and techniques for selecting the number of streams. Fu-
ture work will aso examine the product of MoG and product of
MoG HMM s systems for speech recognition.
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