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ABSTRACT 

 
We propose dynamic Bayesian network (DBN) based 
synchronous and asynchronous multi-stream models for 
noise-robust automatic speech recognition. In these 
models, multiple noise-robust features are combined into 
a single DBN to obtain better performance than any 
single feature system alone. Results on the Aurora 2.0 
noisy speech task show significant improvements of our 
synchronous model over both single stream models and 
over a ROVER based fusion method.   

 
 

1. INTRODUCTION 
 
The task of noise-robust automatic speech recognition 
(ASR) has become an active research topic in recent 
years. In this endeavor, various kinds of noise robust 
feature-extraction methodologies have been developed in 
an attempt to produce much better performance than 
standard mel-frequency cepstral coefficients (MFCCs). In 
general, methodologies that employ only a single feature 
stream have not performed nearly as well as those which 
in some way combine multiple systems together. Indeed, 
much research on such multi-stream models that aims to 
take advantage of the complementary information in 
multiple information streams [1,2] has occurred.  These 
streams might be multi-modal (audio and visual 
information) [3], or simply different sets of features 
extracted from the same speech data.  
How best to combine multiple features is the one of the 
key problems in multi-stream modeling. Previous work 
on combining multiple features, be it audio-visual speech 
recognition (AVSR), multi-band, or multi-stream, can be 
divided into three categories: feature fusion (or early 
integration), decision fusion (or late integration), and 
model fusion. In the feature fusion method [3], multiple 
features are concatenated into a large feature vector that 
is subjected to dimensionality reduction, and the resulting 
features are modeled by a conventional HMM. This 
method, however, cannot easily represent any loose 
asynchrony between different features. In the decision 
fusion method, independent HMMs are trained using 
different features, and decoding is also done 
independently on each HMM.  The final results are 

obtained by combining the results (via likelihood scores 
and an n-best list or lattice) from each HMM using either 
ROVER [4], word graph based hypothesis combination 
[5], or posterior combination [6]. This method might not 
capture any direct correlation between feature vector 
elements. The most common model fusion methods are 
product HMMs or multi-stream HMMs [7]. These 
methods typically require various heuristic-based 
combination strategies to form a unified HMM model 
from the original separately trained HMMs. Often, multi-
stream HMMs impose some form of state synchronicity 
constraint, while product HMMs allow only for limited 
synchrony. In some cases, the number of states in the 
unified HMM model will be the Cartesian product of the 
states in the component HMMs. With only a modest 
number of streams, the resulting unified HMM can 
become intractable because of such a large state space. 
Also, if any stream exponents are used (i.e., exponential 
weights on the stream probabilities), it might cause the 
emission probability densities to be improper (e.g., not 
summing to unity), and standard EM training algorithms 
cannot be directly used to estimate the stream exponents.  
In this work, we propose the use of general dynamic 
Bayesian network (DBN) models to naturally combine 
multiple features. We call this a multi-stream DBN 
model. Our model can represent both the various 
relationships between different feature streams and also 
any asynchrony that might exist between these streams. 
Using a DBN greatly simplifies statistical modeling 
issues, and the method can immediately be varied to use 
any number of feature streams. In section 2, we describe 
the multi-stream DBN models that we developed. In 
section 3, experimentation results and a comparison with 
a standard decision combination method (ROVER) is 
given. Finally in section 4 we provide further discussion 
and then conclude. 
 
2. MULTI-STREAM DBN MODELS FOR SPEECH 

 
A dynamic Bayesian network (DBN), a generalization of 
HMMs, is a statistical model that can represent multiple 
collections of random variables as they evolve over time. 
Coupled HMMs and factorial HMMs are just special 
cases of the much more general DBN. Indeed, DBN 
models have been proposed in recent years for speech 
recognition [8, 9]. In this work, we use the graphical 
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model structure for continuous speech given in [9] as our 
baseline model. In some sense, this particular DBN is 
equivalent to a traditional HMM because it emulates what 
an HMM does. One major difference is that it explicitly 
represents the hierarchical structure consisting of 
sentence, word, phone and sub-phone states.  Our goal in 
this work is to extend this baseline model by introducing 
structure so as to better combine multiple feature streams.  
 
2.1. Synchronous multi-stream model 
 
Our new model is given in Fig. 1. The graph shows a 
whole word model, i.e. a word is composed of fixed 
number of states, and no intermediate phoneme level. The 
upper part of the model is similar to [9]. To the lower 
part of this model, our model adds multiple observation 
variables, each corresponding to a different acoustic 
feature, e.g. MFCC, PLP, etc. All the observation 
variables in this case share one state variable, so in this 
model all streams are synchronized at the state level. 
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Fig.1 Synchronous multi-stream model 

 
The meaning of each variable is as follows:   
Skip Silence, a binary random variable, denoted as SSt, where t means the 
t-th time slice. 
End of utterance, assigned to 1 to mean end of an utterance, denoted as E. 
Word counter, the position in current sentence, denoted as WCt. 
Word, the current word, determined by word counter and the current 
sentence (represented implicitly in the model during training and decoding), 
denoted as Wt. 
Word transition, indicating when the current word ends and a transition to 
next word occurs, denoted as WTt. 
State counter, the index of the current state in the whole word model, 
denoted as SCt. 
State, the current state, it is determined by a word and the state counter, 
denoted as St. 
Observation 1-n, each of the n streams of observations, the m-th 
observation node denoted as m

tO .  
For a better understanding of this model, we precisely 
describe each node’s CPD (conditional probability 
distribution). 
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In the above, SIL denotes the pause between words, 
words[i] denotes the i-th word in current utterance, 
laststate(q,ω) is true iff q is that last state of word ω, Aii 
denotes the probability of staying at state i, state(ω,i) 
gives the i-th state in word ω, m

jb  is the emission 
probability of the m-th stream. Here we use strictly left-
to-right HMMs, so (1-Aii) is the transition probability 
from state i to state i+1. This multi-stream model is 
similar to HTK synchronous multi-stream models [10], 
but in our case we are using a unified DBN. Therefore, 
our model does not require special algorithmic support 
and can be extended easily. 
 
2.2. Asynchronous multi-stream model 
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Fig.2 An asynchronous multi-stream model 

 
The synchronous model assumes multiple streams are 
strictly synchronized at the lowest state level. In this 
section, we investigate a model that relaxes this 
restriction, allowing for limited asynchrony between 
streams at the state level. This is done by having each 
stream depend only on its own hidden state variable. 
Specifically, each stream uses two variables, namely a 
state counter and state transition variable to model the 
relation between word and state, and the transition 
between states. Fig. 2 shows an example of this model. It 
is an asynchronous 2-stream model. It can be seen that 
the two streams share one word variable, thereby 
requiring that the two streams be synchronized at the 
word level. When a word transition occurs, it will reset 
the state variables of both streams to their initial value, 
and this is realized through the edges from word 
transition to state counter. Each stream has different state 
variable, so there is some asynchrony between the two 
streams in a word. The edges from node “state-1” to 
“state-transition-2” denote the correlation 
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System Test  -5dB 0dB 5dB 10dB 15dB 20dB Clean 0-20dB 

TSA 11.46 20.72 42.89 76.39 92.09 96.94 99.17 65.81 

TSB 13.55 26.12 53.66 83.15 94.36 97.69 99.17 75.69 HTK 
Single-stream  
PLP TSC 12.38 21.46 45.33 77.18 92.12 96.92 99.24 66.6 

TSA 10.32 19.93 44.58 74.07 90.57 96.34 99.24 65.1 

TSB 11.36 24.16 53.11 79.29 92.27 96.76 99.24 74.14 HTK  
ROVER  
All TSC 10.89 21.35 47.01 76.03 90.75 96.17 99.26 66.26 

TSA 10.49 19.11 41.9 71.13 89.36 95.93 99.4 63.49 

TSB 11.09 22.62 50.13 76.71 90.9 96.37 99.29 72.67 HTK 
ROVER 
Best2+worst1 TSC 10.48 20.24 44.18 73.41 89.68 95.71 99.48 64.64 

TSA 2.88 18.4 52.42 79.75 92.89 97.31 99.39 68.15 

TSB 6.45 27.02 61.49 85.44 95.17 97.98 99.39 73.42 GMTK 
Single-stream 
PLP TSC 3.9 21.73 54.67 80.22 92.82 97.19 99.31 69.33 

TSA 9.16 25.18 61.69 84.98 94.01 97.26 99.38 72.62 

TSB 10.58 29.09 64.45 86.33 94.48 97.29 99.38 74.33 GMTK 
Multi-stream 
All TSC 9.94 23.62 56.43 81.45 93.33 97.04 99.43 70.37 

TSA 11.96 34.39 66.83 86.17 94.24 97.21 99.39 75.77 

TSB 13.58 36 67.89 87.25 94.28 97.19 99.39 76.52 
GMTK 
Multi-stream 
Best2+worst1 TSC 11.88 27.68 59.54 82.45 93.1 96.9 99.46 71.93 

Table 1 Word recognition accuracies for the HTK and GMTK systems averaged across noise types 
between two streams. The definition of  the CPD for 
state-transition-2 now becomes 
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Where jm
iiA , denotes probability of staying at state i for 

stream m in condition that stream m-1 is in state j. 
We can see here that for a stream m, whether the state 
stays the same or moves to the next state is determined by 
the current states of both the current stream and also the 
other streams.  
This model has many more variables than the 
synchronous model. As is well known, the computational 
complexity and memory requirements of exact DBN 
inference are exponential in the number of nodes in the 
largest clique. Therefore, to make the model more 
tractable, we currently make stream m correlated only 
with stream m-1. So the model we currently evaluate is 
something akin to a coupled HMM. For more complex 
models, approximate inference might be required. 

 
3. EXPERIMENTAL RESULTS 

 
3.1. Setup 
 
Our evaluations are conducted on the Aurora 2.0 
continuous noisy digit speech recognition task [11]. This 
corpus allows for both matched (multi-condition training) 
and mis-matched (clean-training) training/testing 
conditions. Although multi-condition training generally 
produces better performance, it is somewhat less useful 
for evaluating more real-world testing conditions, where 
the training and testing conditions are quite mis-matched. 

Therefore, we evaluate using only the clean training data 
(mis-matched conditions). The testing is done on all the 
Aurora 2.0 test data (sets A, B, C), including clean 
speech, and noisy speech at different SNRs. 
The baseline systems include single-stream models for 5 
widely used features: MFCC, PLP [10], RASTA, 
JRASTA [12], Wide-band MFCC [4], using both HTK 
and GMTK  [13]. We also tested a ROVER-based [4] 
decision fusion method to combine n-best results from the 
individual HTK single-stream systems. Finally we built 
several corresponding multi-stream models using GMTK. 
Because there are many possible combinations of 
different features, we chose the following multi-stream 
combinations based on the constituent single-stream 
performances: 
All:  jrasta, mfcc, plp, rasta, wbmfcc 
Best4:  mfcc, plp, rasta, wbmfcc 
Best3:  mfcc, plp, rasta 
Best2+worst1:  mfcc, plp, jrasta 
We used a toolkit from ICSI/UC Berkeley to generate 
rasta and jrasta features [12], and made wide-band MFCC 
features by modifying the overlap of each triangular filter 
in the filterbank to be 75% rather than 50%. All features 
were processed in the HTK format. The detailed 
parameter settings for each feature extraction are: 
MFCC_D_Z_0, Jrasta_E_D_A, Rasta_E_D_A, 
PLP_D_Z_A_0, and WMFCC_D_Z_0. In this format, _E 
indicates having energy, _D means having delta 
coefficients, _A indicates having acceleration coefficients, 
_Z means having zero mean static coefficients, and _0 
means having 0’th cepstral coefficients. In all models, 
each stream is modeled by 16-states per word, 4-mixture 
per state model. 
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3.2. Results 
 
The experimental results for single-stream, ROVER 
combination and synchronous multi-stream models are 
shown in Table 1. For single stream models, we only give 
the results for PLP features, which got the best 
performance with both HTK and GMTK.  For the multi-
stream case, we report the results of the two best 
performing combinations: All, Best2+ worst1. 
The results show that ROVER combination is not good in 
this case for combining multiple acoustic features; 
actually it is even worse than the HTK-based single 
stream system. 
Note that all four of the DBN-based synchronous multi-
stream models outperformed all of the single stream 
models both on average and on most of the individual 
tests. Interestingly, the Best2+worst1 GMTK case 
performed the best and got a 16% relative WER reduction 
over the GMTK single-stream model based on PLP 
features alone (averaged across 0-20dB of all three test 
sets).  The other three in order of best to worst were:  all, 
best 4, and best 3.  
We also performed preliminary experiments using the 
asynchronous mutli-stream model. We compared two 
HTK-based single-stream models for two different feature 
streams (jrasta and wbmfcc) with a DBN-based 
asynchronous two-stream model (using the same two 
feature streams). Because of time limitations, we tested 
models using only of 8-states per word (rather than 16, as 
in the previous experiments). We present averaged results 
across the 5-10dB SNR cases of test set A only: 
DBN/GMTK asynchronous multi-stream             32.93 
HTK single-stream (jrasta)                                    22.26 
HTK single-stream (wbmfcc)                                57.06 

As can be seen, the asynchronous multi-stream model 
does not yet produce a benefit, as in the synchronous case 
(and as further discussed in the next section). 
 

4. CONCLUSIONS AND DISCUSSION 
 
In this paper, we described the results of our initial work 
on multi-stream DBN models for speech. Specifically, 
using GMTK, we implemented and tested several multi-
stream DBN models for speech that incorporated multiple 
acoustic features. Results show that these models can get 
significant WER improvement over both single stream 
models and ROVER combination on the Aurora 2.0 noisy 
digits recognition task. We believe, therefore, that the 
DBN approach is a simple and effective way to combine 
multiple noise-robust features to improve performance of 
speech recognition system under various types of noisy 
environments. Two highlights of this work are that we 
use general DBN models, so no special-purpose complex 
algorithms need be developed besides standard DBN 
inference. Second, our combination methods achieved 

good performance for noisy speech even using full-band 
acoustic features that are believed to be highly correlated.      
Of course, our asynchronous model still needs further 
research. One promising direction is to discover model 
structure automatically [9] so as to better model the 
degree of asynchrony between features. Also we plan to 
explore loosely coupled relations and approximate 
methods to make these complex models more tractable. 
Another possible reason for the asynchronous model’s 
poor performance is that there might not be much actual 
asynchrony required when representing different acoustic 
features. We therefore plan to utilize complementary 
feature sets that are believed to possess more asynchrony. 
These might include lip-reading, multi-rate features, non-
standard microphones (throat microphones), and features 
from EMGs and other sensors. 
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