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ABSTRACT

We propose dynamic Bayesian network (DBN) based
synchronous and asynchronous multi-stream models for
noise-robust automatic speech recognition. In these
models, multiple noise-robust features are combined into
a single DBN to obtain better performance than any
single feature system alone. Results on the Aurora 2.0
noisy speech task show significant improvements of our
synchronous model over both single stream models and
over a ROVER based fusion method.

1. INTRODUCTION

The task of noise-robust automatic speech recognition
(ASR) has become an active research topic in recent
years. In this endeavor, various kinds of noise robust
feature-extraction methodologies have been developed in
an attempt to produce much better performance than
standard mel-frequency cepstral coefficients (MFCCs). In
general, methodologies that employ only a single feature
stream have not performed nearly as well as those which
in some way combine multiple systems together. Indeed,
much research on such multi-stream models that aims to
take advantage of the complementary information in
multiple information streams [1,2] has occurred. These
streams might be multi-modal (audio and visud
information) [3], or simply different sets of features
extracted from the same speech data.

How best to combine multiple features is the one of the
key problems in multi-stream modeling. Previous work
on combining multiple features, be it audio-visual speech
recognition (AVSR), multi-band, or multi-stream, can be
divided into three categories. feature fusion (or early
integration), decison fusion (or late integration), and
mode fusion. In the feature fusion method [3], multiple
features are concatenated into a large feature vector that
is subjected to dimensionality reduction, and the resulting
features are modeled by a conventiona HMM. This
method, however, cannot easily represent any loose
asynchrony between different features. In the decision
fuson method, independent HMMs are trained using
different features, and decoding is aso done
independently on each HMM. The fina results are
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obtained by combining the results (via likelihood scores
and an n-best list or lattice) from each HMM using either
ROVER [4], word graph based hypothesis combination
[5], or posterior combination [6]. This method might not
capture any direct correlation between feature vector
elements. The most common model fusion methods are
product HMMs or multi-stream HMMs [7]. These
methods typically require various heuristic-based
combination strategies to form a unified HMM mode
from the original separately trained HMMs. Often, multi-
stream HMMs impose some form of state synchronicity
constraint, while product HMMs alow only for limited
synchrony. In some cases, the number of states in the
unified HMM mode will be the Cartesian product of the
states in the component HMMs. With only a modest
number of streams, the resulting unified HMM can
become intractable because of such a large state space.
Also, if any stream exponents are used (i.e., exponential
weights on the stream probabilities), it might cause the
emission probability densities to be improper (e.g., not
summing to unity), and standard EM training algorithms
cannot be directly used to estimate the stream exponents.
In this work, we propose the use of general dynamic
Bayesian network (DBN) models to naturally combine
multiple features. We call this a multi-stream DBN
model. Our model can represent both the various
relationships between different feature streams and also
any asynchrony that might exist between these streams.
Usng a DBN greatly simplifies statistical modeling
issues, and the method can immediately be varied to use
any number of feature streams. In section 2, we describe
the multi-stream DBN models that we developed. In
section 3, experimentation results and a comparison with
a standard decison combination method (ROVER) is
given. Finally in section 4 we provide further discussion
and then conclude.

2. MULTI-STREAM DBN MODELSFOR SPEECH

A dynamic Bayesian network (DBN), a generalization of
HMMs, is a statistical modd that can represent multiple
collections of random variables as they evolve over time.
Coupled HMMs and factorial HMMs are just special
cases of the much more general DBN. Indeed, DBN
models have been proposed in recent years for speech
recognition [8, 9]. In this work, we use the graphical
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mode structure for continuous speech given in [9] as our
baseline model. In some sense, this particular DBN is
equivalent to atraditional HMM because it emulates what
an HMM does. One mgjor difference is that it explicitly
represents the hierarchical structure consisting of
sentence, word, phone and sub-phone states. Our goal in
this work is to extend this baseline moded by introducing
structure so as to better combine multiple feature streams.

2.1. Synchronous multi-stream model

Our new model is given in Fig. 1. The graph shows a
whole word modd, i.e. a word is composed of fixed
number of states, and no intermediate phonemelevel. The
upper part of the model is smilar to [9]. To the lower
part of this model, our model adds multiple observation
variables, each corresponding to a different acoustic
feature, eg. MFCC, PLP, etc. All the observation
variables in this case share one state variable, so in this
mode all streams are synchronized at the state level.
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Fig.1 Synchronous multi-stream model

The meaning of each variableis as follows:

Skip Silence, abinary random variable, denoted as SS, where t means the
t-thtimedice. )

End of utterance, assigned to 1 to mean end of an utterance, denoted asE.
Word counter, the position in current sentence, denoted as WC:.

Word, the current word, determined by word counter and the current
sentence (represented implicitly in the model during training and decoding),
denoted s, e >
Word transition, indicating when the current word ends and a trangition to
next word occurs, denoted as WT;. .

State counter, the index of the current state in the whole word mode,
denoted as SC.. o )

State, the current dtate, it is determined by a word and the state counter,
denoted as S. .

Observation 1-n, each of the n sreams of observations, the m-th
observation node denoted as O™.

For a better understanding of this model, we precisely
describe each node's CPD (conditional probability

digtribution).
PMWC = j|WC 3 =1i,SSy =b,WI; = f)

1 if j=i+1 and b=0 and f =1
_]1 if j=i and b=0 and f=0
31 if J]=9L and b=1

0 otherwise
P(W. = o [WC ‘_'):{10 |f0thgr)vw;mrds [i]
P(SC(= j|WI ;=Db,STy=f,SC 1 =1)

if j=i+1 and b =0 and f=1
_ 1 if j =i and b =0 and f =0
-1 if i=1 and b =1 and f =1
0 otherwise

PWI,=f|W, =w,C,=4q,ST, =Db)
1 if b=0 and f =0
_ )1 if b=1 and f =1 and laststate  (q,w)
1 if b=1 and f =0 and ~ laststate (q,w)
0 otherwise
- _ oy = A if b=0
P(ST“'”S“')‘{—AH it b=1
. _ I I § if = sate (w,i)
P(S: = ]lW‘_wv&:‘_l)_{O otherwise

P(O™|S: = j)=bp

In the above, SIL denotes the pause between words,
wordgi] denotes the i-th word in current utterance,
laststate(q,a) is true iff q is that last state of word ) A
denotes the probability of staying at state i, state(wi)
gives the i-th date in word « bf" is the emission
probability of the m-th stream. Here we use strictly |eft-
to-right HMMs, so (1-Ajj) is the transition probability
from date i to state i+1. This multi-stream mode is
similar to HTK synchronous multi-stream models [10],
but in our case we are using a unified DBN. Therefore,
our model does naot require specia algorithmic support
and can be extended easily.

2.2. Asynchronous multi-stream model
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Fig.2 An asynchronous multi-stream model

The synchronous model assumes multiple streams are
strictly synchronized at the lowest state level. In this
section, we investigate a modd that relaxes this
restriction, alowing for limited asynchrony between
streams at the state level. This is done by having each
stream depend only on its own hidden state variable.
Specifically, each stream uses two variables, namely a
state counter and state transition variable to model the
relation between word and state, and the transition
between states. Fig. 2 shows an example of this modd. It
is an asynchronous 2-stream modd. It can be seen that
the two streams share one word variable, thereby
requiring that the two streams be synchronized at the
word level. When a word transition occurs, it will reset
the state variables of both streams to their initial value,
and this is realized through the edges from word
trangition to state counter. Each stream has different state
variable, so there is some asynchrony between the two
streams in a word. The edges from node “state-1" to
“state-transition-2” denote the correlation
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System Test -5dB 0dB 5dB 10dB 15dB 20dB Clean 0-20dB
TSA 11.46 20.72 42.89 76.39 92.09 96.94 99.17 65.81
HTK TSB 13.55 26.12 53.66 83.15 94.36 97.69 99.17 75.69
Slngle—stream
PL TSC 12.38 21.46 45.33 77.18 92.12 96.92 99.24 66.6
TSA 10.32 19.93 44.58 74.07 90.57 96.34 99.24 65.1
EE@ER TSB 11.36 24.16 53.11 79.29 92.27 96.76 99.24 74.14
All TSC 10.89 21.35 47.01 76.03 90.75 96.17 99.26 66.26
TSA 10.49 19.11 41.9 71.13 89.36 95.93 99.4 63.49
EE@ER TSB 11.09 22.62 50.13 76.71 90.9 96.37 99.29 72.67
Best2+worstl  |TSC 10.48 20.24 44.18 73.41 89.68 95.71 99.48 64.64
TSA 2.88 18.4 52.42 79.75 92.89 97.31 99.39 68.15
GMTK TSB 6.45 27.02 61.49 85.44 95.17 97.98 99.39 73.42
Slngle—stream
PL TSC 3.9 21.73 54.67 80.22 92.82 97.19 99.31 69.33
TSA 9.16 25.18 61.69 84.98 94.01 97.26 99.38 72.62
GMTK TSB 10.58 29.09 64.45 86.33 94.48 97.29 99.38 74.33
Multi-stream
All TSC 9.94 23.62 56.43 81.45 93.33 97.04 99.43 70.37
GMTK TSA 11.96 34.39 66.83 86.17 94.24 97.21 99.39 75.77
Multi-stream TSB 13.58 36 67.89 87.25 94.28 97.19 99.39 76.52
Best2+worstl  |TSC 11.88 27.68 59.54 82.45 93.1 96.9 99.46 71.93

Table 1 Word recognition accuracies for the HTK and GMTK systems averaged across noise types

between two streams. The definition of the CPD for
state-transition-2 now becomes

m,j ; -
P(ST" =b|SM =i,§m1 = J):{l_'Aim,,- e
Where A™J denotes probability of staying at state i for
stream min condition that stream m-1 isin state]j.
We can see here that for a stream m, whether the state
stays the same or moves to the next state is determined by
the current states of both the current stream and also the
other streams.
This mode has many more variables than the
synchronous model. Asiswell known, the computational
complexity and memory requirements of exact DBN
inference are exponentia in the number of nodes in the
largest clique. Therefore, to make the mode more
tractable, we currently make stream m correlated only
with stream m-1. So the model we currently evaluate is
something akin to a coupled HMM. For more complex
model s, approximate inference might be required.

3. EXPERIMENTAL RESULTS
3.1. Setup

Our evaluations are conducted on the Aurora 2.0
continuous noisy digit speech recognition task [11]. This
corpus alows for both matched (multi-condition training)
and mismatched (clean-training) training/testing
conditions. Although multi-condition training generally
produces better performance, it is somewhat less useful
for evaluating more real-world testing conditions, where
the training and testing conditions are quite mis-matched.

Therefore, we evaluate using only the clean training data
(mis-matched conditions). The testing is done on all the
Aurora 2.0 test data (sets A, B, C), including clean
speech, and noisy speech at different SNRs.

The basdine systems include single-stream models for 5
widely used featuress MFCC, PLP [10], RASTA,
JRASTA [12], Wide-band MFCC [4], using both HTK
and GMTK [13]. We also tested a ROVER-based [4]
decision fusion method to combine n-best results from the
individual HTK single-stream systems. Finaly we built
several corresponding multi-stream models using GMTK.
Because there are many possible combinations of
different features, we chose the following multi-stream
combinations based on the constituent single-stream
performances:

All: jrasta, mfcc, plp, rasta, womfcc

Best4: mfcc, plp, rasta, wbmfcc

Best3: mfcc, plp, rasta

Best2+worst1: mfcc, plp, jrasta

We used a toolkit from ICSI/UC Berkeley to generate
rasta and jrasta features [12], and made wide-band MFCC
features by modifying the overlap of each triangular filter
in the filterbank to be 75% rather than 50%. All features
were processed in the HTK format. The detailed
parameter settings for each feature extraction are
MFCC_D_Z 0, Jrasta E_D_A, Rasta E D_A,
PLP D Z A 0,and WMFCC D _Z 0. Inthisformat, E
indicates having energy, _D means having deta
coefficients, _A indicates having accel eration coefficients,
_Z means having zero mean static coefficients, and _0
means having O'th cepstral coefficients. In al models,
each stream is modeled by 16-states per word, 4-mixture
per state model.
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3.2. Reaults

The experimental results for single-stream, ROVER
combination and synchronous multi-stream models are
shown in Table 1. For single stream models, we only give
the results for PLP features, which got the best
performance with both HTK and GMTK. For the multi-
stream case, we report the results of the two best
performing combinations: All, Best2+ worst1.

The results show that ROV ER combination is not good in
this case for combining multiple acoustic features,
actually it is even worse than the HTK-based single
stream system.

Note that all four of the DBN-based synchronous multi-
stream models outperformed al of the single stream
models both on average and on most of the individual
tests. Interestingly, the Best2+worstl GMTK case
performed the best and got a 16% relative WER reduction
over the GMTK single-stream mode based on PLP
features alone (averaged across 0-20dB of all three test
sets). The other threein order of best to worst were: all,
best 4, and best 3.

We also performed preliminary experiments using the
asynchronous mutli-stream model. We compared two
HTK-based single-stream models for two different feature
streams (jrasta and wbmfcc) with a DBN-based
asynchronous two-stream model (using the same two
feature streams). Because of time limitations, we tested
models using only of 8-states per word (rather than 16, as
in the previous experiments). We present averaged results
across the 5-10dB SNR cases of test set A only:

DBN/GMTK asynchronous multi-stream 32.93
HTK single-stream (jrasta) 22.26
HTK single-stream (wbmifcc) 57.06

As can be seen, the asynchronous multi-stream model
does not yet produce a benefit, as in the synchronous case
(and as further discussed in the next section).

4. CONCLUSIONS AND DISCUSSION

In this paper, we described the results of our initial work
on multi-stream DBN models for speech. Specifically,
using GMTK, we implemented and tested several multi-
stream DBN models for speech that incorporated multiple
acoustic features. Results show that these models can get
significant WER improvement over both single stream
models and ROVER combination on the Aurora 2.0 noisy
digits recognition task. We believe, therefore, that the
DBN approach is a smple and effective way to combine
multiple noise-robust features to improve performance of
speech recognition system under various types of noisy
environments. Two highlights of this work are that we
use general DBN model's, so no special-purpose complex
algorithms need be developed besides standard DBN
inference. Second, our combination methods achieved

good performance for noisy speech even using full-band
acoustic features that are believed to be highly correlated.
Of course, our asynchronous model still needs further
research. One promising direction is to discover mode
structure automatically [9] so as to better modd the
degree of asynchrony between features. Also we plan to
explore loosdly coupled relations and approximate
methods to make these complex models more tractable.
Ancther possible reason for the asynchronous mode’s
poor performance is that there might not be much actual
asynchrony required when representing different acoustic
features. We therefore plan to utilize complementary
feature sets that are believed to possess more asynchrony.
These might include lip-reading, multi-rate features, non-
standard microphones (throat microphones), and features
from EMGs and other sensors.
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