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ABSTRACT 
 
Kalman algorithms have been widely applied, for instance 
in single-channel speech enhancement. However, when 
carrying out Kalman smoothing, the computational cost 
and the data storage requirements are two specific 
problems. In this paper, a dual-filter-based smoother is 
proposed and used in the framework of speech 
enhancement. Our approach comprises a forward-in-time 
Kalman filter and a backward-in-time Kalman filter. Both 
filters are based on their respective forward-in-time linear 
prediction (LP) model and backward-in-time LP model. 
This method does not require a large storage space as a 
standard Kalman smoother does. The algorithm is 
evaluated by considering a speech signal embedded in a 
white Gaussian noise. Simulation Results show that the 
proposed algorithm provides a higher improvement of 
signal to noise ratio (SNR) than the Kalman filtering. 

Keywords: speech enhancement, Kalman filter, smoothing, 
expectation-maximization algorithm 

 
1. INTRODUCTION 

 
When using a state space representation of the system, the 
Kalman filter (KF) is a way to recursively obtain the 
optimal estimation of the state, given the past and present 
observation data [9]. Among its various applications, 
Kalman filtering has been successfully used for single-
channel speech enhancement (see for instance 
[3][4][5][6][7][8][11]). In this area, the clean speech, 
denoted s(k) is often represented by a linear prediction  
(LP) model [2] ; in addition, the background noise is 
usually assumed stationary and its second order statistics 
can be estimated during the periods of silence, between 
utterances. In [11], Paliwal et al. propose a Kalman filter-
based speech enhancement, in which the LP parameters 
are estimated directly from the clean speech, supposed to 
be available. However, this approach cannot be computed 
in practice. For this reason, an Expectation-Maximization 
(EM) [10][12] can be considered; this is an iterative 

likelihood maximization method used when it is difficult 
to obtain a direct maximum likelihood (ML) estimate, 
operating in two steps (E and M steps). In [4][6], the E-
step consists in carrying out a Kalman filter. It should be 
noted that a Kalman smoother [1][5] can also be used 
since it improves the estimation precision and hence 
weakens the residual noise in the enhanced speech. 
However, when completing standard Kalman smoothing 
[1][13], data storage space must be taken into account. 
This comprises the Kalman gain matrix, filtered mean 
vector and covariance matrix, one-step-forward predicted 
mean vector and covariance matrix. These quantities are 
calculated by the Kalman filter and used for backward in 
time recursive calculation. So, due to the enormous 
storage requirements and the computational cost, applying 
Kalman smoothing is confined to very specific 
applications. 
    In this paper, we propose to investigate a dual-filter-
based smoother that makes it possible to reduce the 
storage space; In addition, we apply it in the framework of 
speech enhancement and compare it to the Kalman filter 
scheme. 

The remainder of the paper is organized as follows: in 
section 2, a dual-filter-based smoother for speech 
enhancement is presented; simulation results are given in 
section 3, and finally a brief concluding remark is given in 
section 4. 

 
2. A DUAL-FILTER-BASED SMOOTHER 

 
Let us consider the observations )(kz  of a speech signal 

)(ks  contaminated by an additive noise )(kv : 

)()()( kvkskz +=  (1) 

Here, we assume that )(kv  is the zero mean white noise 

with variance 2
vσ . It should be noted that if the additive 

noise is colored, then a pre-whitening step can be 
considered like in [8]. 

Here, we propose to retrieve the speech from the noisy 
observations. For this purpose, we propose a frame-by-
frame approach using a dual-fi lter-based smoother. The 
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basic idea is to run a Kalman fi lter forward in time, in 
order to estimate the mean and the covariance of the state 
at the instant k, given the observations )(,),1( kzz � . 

Meanwhile, a second Kalman filter is used backward in 
time to produce a one-step backward-time predicted mean 
and covariance, given the future data )1(,),( +kzNz � . 

Both obtained estimates are then combined to provide a 
smoothed estimate of the speech signal. See Figure 1. 

 

 
Figure 1. a smoother based on forward fi lter 

and backward prediction 
 
    Let us introduce the forward in time LP model and the 
backward in time LP model during an analyzed frame 
with time index ),,1( N� . 

    The forward in time Mth order LP process can be 
expressed as follows: 
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σ�=  is the forward in 

time LP model parameter which can be estimated from 
)(,),1( Nss �  by using ML estimator, Yule-Walker 

equation or LS estimator, etc. [9][12]. 
    Similarly, the backward in time Mth LP process can be 
defined as follows: 
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σ�=  is the backward in 

time LP model parameter which can be estimated from 
)1(,),( sNs � . 

    By respectively denoting the space vector for the 
forward in time LP model and the backward in time LP 
model: 

[ ]Tf ksMkskX )(,),1()( 
+−= , 

[ ]Tb ksMkskX )(,),1()( �−+= , 

the state space representation can be written as follows: 
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    Based on equation (4), and by taking the following 
initial conditions : 

[ ]Tf
MzzMMX )(,),1()(ˆ #= , 

IMMP v
f 2)( σ=  

we can recursively calculate the mean and covariance of 

the state, denoted by $%&'()
)(,)(ˆ kkPkkX ff

, for 

NMk ,,1 *+= . 
    Based on equation (5) and by taking the initial 
conditions: 

[ ]Tb
MNzNzMNMNX )1(,),()21(ˆ +−=+−+− + , 

IMNMNP v
b 2)21( σ=+−+−  

)1(ˆ +kksb  

)1( +kkP bs
 

)(ˆ kks f  

)( kkP fs
 

Weighted Combination 

Filter 1 
(forward-time) 

Filter 2 
(backward-time) 

)(,),1( kzz ,  )1(,),( +kzNz -  

)(ˆ ks  
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we can recursively  calculate the one-step backward-time 
predicted mean and covariance of the state, ������

++ )1(,)1(ˆ kkPkkX bb
 , for 1,, �MNk −= . 

    Accordingly, we can obtain the forward-time filter and 
the one-step backward-time prediction of s(k) and their 

variances, denoted respectively as ( ))(,)(ˆ kkPkks fs

f  

and ( ))1(,)1(ˆ ++ kkPkks bs

b . 

    A smoothed estimate of s(k) can then be obtained by 

combining )(ˆ kks f  and )1(ˆ +kksb , such as 

)1()()( 111 ++= −−− kkPkkPkP bf sss  (5) 

( ))1(ˆ)1()(ˆ)()()(ˆ 11 +++= −− kkskkPkkskkPkPks b

s

f

ss bf  

 (6) 

    When the clean speech was available, the above 
smoothing algorithm could be directly applied for speech 
enhancement, by estimating the forward in time LP 
parameters and the backward in time parameters, directly 
from the clean speech. 
    However, in practice, only the noisy speech is available. 
For this reason, an EM algorithm based approach is 
considered. 
    In this framework, )(,),1( Nss �  define the so-called 

complete data whereas )(,),1( Nzz � are the so-called 
incomplete data. The ordinary ML estimation consists in 
maximizing the likelihood of the complete data 

)(,),1( Nss 	 . Since the complete data are not available, 

estimating the LP model parameters can be done through 
the maximization of the conditional expectation of the 
likelihood. This leads to the iterative and successive 
processing of the so-called M-step and E-step. During the 
M-step, the LP parameters are estimated by means of the 
estimated complete data )(ˆ,),1(ˆ Nss 
 . These quantities 
can be obtained during the E-step by using the estimated 

LP parameters bp �� ˆ,ˆ  obtained during the former M-step 
and by applying a Kalman algorithm. Here, the above 
dual-filter-based smoother is used. 
    The procedure can be described as follows:  
    Step 1 Initialization: select the initial parameter 

estimates p�
0

ˆ , b

0

ˆ , and for �,1,0=i , until 
convergence; 

    Step 2 Expectation: based on the estimated parameters 
p

i

� ˆ , b
i


 ˆ  in the ith iteration, exploit the proposed 

dual-filter-based smoother to calculate the 
enhanced speech of the analysed frame in the ith 
iteration, denoted as )(ˆ ksi ; 

    Step 3 Maximization: based on the estimated speech 
)(ˆ ksi  at the i th iteration, re-estimate the 

parameters of the forward in time LP model and 
the backward in time LP model for the i+1th 
iteration; 

    Step 4 Convergence test: if the convergence test is not 
satisfied, then go to Step 2. 

 
3. RESULTS 

 
The comparative study is carried out with speech signal 
sampled at 8kHz. The length of the frame N is equal to 
256 and an overlap of 50 % is used. 

First of all, we assume that the clean speech is available, 
like in [11]. Figure 2 shows the plots of the clean speech, 
the noisy speech with a Signal to Noise Ratio (SNR) equal 
to 5 and the enhanced speech using the proposed dual-
filter-based smothering algorithm. Table 1 shows the 
comparison of the SNR improvement for the KF based 
enhancement algorithm [11] and the proposed DFBS 
based enhancement algorithm, for the input SNR ranked 
from –10dB to 15dB. 

input SNR (dB) -10 -5 0 5 10 15 
KF[11]: output SNR (dB) 2.2 4.2 6.8 9.9 13.5 18.8 
DFBS: output SNR (dB) 2.9 5.1 8.0 11.2 14.6 19.2 

Table 1. comparison of DFBS based 
enhancement algorithm and KF based 
enhancement algorithm over SNR 

 
The second part of our simulations is completed when 

only noisy speech is available. At that stage, we use EM 
algorithms for speech enhancement, in which the E-step 
are respectively based on KF and DFBS. The convergence 
test rule is taken as follows: If the difference of SNR 
improvement between two neighboring iterations is less 
than 0.1dB, the convergence of the performance is 
achieved. The comparison of the SNR improvement of the 
two algorithms is showed in Table 2. The average 
iteration numbers (AIN) in a frame for the two algorithms 
are showed in Table 3.  From Tables 2 and 3, it is obvious 
that the proposed DFBS based EM algorithm has more 
SNR improvement and less iteration numbers than the KF 
based EM algorithm. 

input SNR (dB) -10 -5 0 5 10 15 
KF-EM: output SNR (dB) 1.6 3.6 6.4 9.7 13.3 17.2 

DFBS-EM: output SNR (dB) 1.8 4.1 7.1 10.6 14.3 18.1 

Table 2. comparison of DFBS based EM 
algorithm and KF based EM algorithm 

 
input SNR (dB) -10 -5 0 5 10 15 
KF-EM: AIN 4.5 4.1 4.0 3.9 3.6 3.0 

DFBS-EM: AIN 3.4 3.1 3.0 2.9 2.9 2.8 

Table 3. comparison of average iteration 
numbers (AIN) of DFBS based EM 
algorithm and KF based EM algorithm 
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(a) 

 

(b) 

 

(c) 

 
Figure 2. (a) clean speech. (b) noisy speech 

with SNR=5dB. (c) enhanced speech 
using DFBS. 

 
 

4. CONCLUSION 
 
The Kaman Filter has been widely used in many areas 
from tracking to speech enhancement. Since the speech 
signal is often assumed stationary during an analysed 
frame (20-30 ms), the Kalman smoother can be carried out 
and provides better estimates of the state since it is based 
on a higher number of observations. However, the 
enormous storage requirements of the Kalman smoother 
confine its applications in practice. In this paper, our 
purpose was to present an alternative to the Kalman 

smoother, named dual-filter-based smoother (DFBS), 
which does not require such a storage space for the 
vectors and matrices during the Kalman filtering process. 
The evaluation of the DFBS-based speech enhancement 
algorithm has been performed in comparison to the KF 
based speech enhancement algorithm. The results show 
that the proposed DBFS based algorithm can provide a 
higher SNR improvement than the KF based algorithm. 
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