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ABSTRACT

Kaman algorithms have been widely applied, for instance
in single-channel speech enhancement. However, when
carrying out Kalman smoothing, the computational cost
and the data dorage requirements are two specific
problems. In this paper, a dual-filter-based smoother is
proposed and used in the framework of speech
enhancement. Our approach comprises a forward-in-time
Kalman filter and a backward-in-time Kalman filter. Both
filters are based on their respective forward-in-time linear
prediction (LP) model and backward-in-time LP model.
This method does not require a large storage space as a
standard Kaman smoother does. The agorithm is
evaluated by considering a speech signa embedded in a
white Gaussian noise. Simulation Results show that the
proposed agorithm provides a higher improvement of
signal to noiseratio (SNR) than the Kalman filtering.

Keywords: speech enhancement, Kalman filter, smoothing,
expectation-maximization algorithm

1. INTRODUCTION

When using a state space representation of the system, the
Kaman filter (KF) is a way to recursvely obtain the
optimal estimation of the state, given the past and present
observation data [9]. Among its various applications,
Kaman filtering has been successfully used for single-
channel speech enhancement (see for instance
[31[4][5][6][71[8][11]). In this area, the clean speech,
denoted s(k) is often represented by a linear prediction
(LP) model [2] ; in addition, the background noise is
usually assumed stationary and its second order statistics
can be estimated during the periods of silence, between
utterances. In [11], Pdiwa et al. propose a Kaman filter-
based speech enhancement, in which the LP parameters
are egtimated directly from the clean speech, supposed to
be available. However, this approach cannot be computed
in practice. For this reason, an Expectation-Maximization
(EM) [10][12] can be considered; this is an iterative
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likelihood maximization method used when it is difficult
to obtain a direct maximum likelihood (ML) estimate,
operating in two steps (E and M steps). In [4][6], the E-
step condists in carrying out a Kalman filter. It should be
noted that a Kalman smoother [1][5] can aso be used
since it improves the estimation precison and hence
weakens the residua noise in the enhanced speech.
However, when completing standard Kalman smoothing
[1][13], data storage space must be taken into account.
This comprises the Kalman gain matrix, filtered mean
vector and covariance matrix, one-step-forward predicted
mean vector and covariance matrix. These quantities are
calculated by the Kalman filter and used for backward in
time recursive calculation. So, due to the enormous
storage requirements and the computational cost, applying
Kadman smoothing is confined to very specific
applications.

In this paper, we propose to investigate a dual-filter-
based smoother that makes it possible to reduce the
storage space; In addition, we apply it in the framework of
speech enhancement and compare it to the Kalman filter
scheme.

The remainder of the paper is organized as follows: in
section 2, a dua-filter-based smoother for speech
enhancement is presented; simulation results are given in
section 3, and findly abrief concluding remark isgivenin
section 4.

2.ADUAL-FILTER-BASED SMOOTHER

Let us consider the observations z(k) of a speech signal
s(k) contaminated by an additive noise v(k) :

2(k) = s(k) + v(k) D

Here, we assume that v(k) is the zero mean white noise

with variance o7’ . It should be noted that if the additive
noise is colored, then a pre-whitening step can be
considered like in [8].

Here, we propose to retrieve the speech from the noisy
observations. For this purpose, we propose a frame-by-
frame approach using a dual-filter-based smoother. The
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basic idea is to run a Kalman filter forward in time, in
order to estimate the mean and the covariance of the state
at the ingtant k, given the observations z(1),---,z(k) .
Meanwhile, a second Kalman filter is used backward in
time to produce a one-step backward-time predicted mean
and covariance, given the future data z(N),---,z2(k +1) .
Both obtained estimates are then combined to provide a
smoothed estimate of the speech signal. See Figure 1.

2(1),---,2(k) 2(N), -+, z2(k +1)
Filter 1 Filter 2
(forward-time) (backward-time)
8" (Kk) (kK +1)
P, (k) P, (kk+1)
\ 4 \ 4

Weighted Combination

§(k)

Figure 1. a smoother based on forward filter
and backward prediction

Let us introduce the forward in time LP model and the
backward in time LP model during an analyzed frame
with timeindex (1,---,N) .

The forward in time M™ order LP process can be
expressed as follows:

sk) = ars(k —i) +uP(k), K=M +1,N  (2)

where u® (k) is the driving process with zero mean and
- 2 _ 2 - -
variance o, . ©° =(ay, -+, ay,0,) is the forward in

time LP model parameter which can be estimated from
s(1),---,s(N) by using ML estimator, Yule-Walker

eguation or LS estimator, etc. [9][12].
Similarly, the backward in time M™ LP process can be

defined as follows:
M
s(k)=Y a’s(k +i)+u’(k), k=N-M,---1  (3)
i=1

where u°(k) is the driving process with zero mean and

variance 07, . ©° =(a/,---,ay,07%) is the backward in

time LP model parameter which can be estimated from
s(N),---, <D .

By respectively denoting the space vector for the
forward in time LP model and the backward in time LP

model:
X" (k) =[stk=M +D),-, ()],
X" (k) =[s(k+ M =1),---, ()],
the state space representation can be written as follows:

X'(k)=A" X (k-1 +Bu’(K

f 4
z(k) =CX ' (K) +v(K)
and
X°(k) = A" X" (k +1) + Bu® (k) )
Z(k) =CX" (k) +v(k)
where
0 1 0o --- 0
A" = . 0|,c=[o 0 1
0 0 ]_
ajy ay, al
0 1 0 0
A= . .. o[,B=[0 - 0 1
0 e o 01
a% al, - - @

Based on equation (4), and by taking the following
initial conditions :

~ f
X (MM) =[z@), -, zm)]",
P (M[M) =0
we can recursively calculate the mean and covariance of
the state, denoted by (5 "(Kk), P’ (k|k)j . for

k=M+1---N.
Based on equation (5) and by taking the initid
conditions:

X (N =M +IN-M +2) =[z(N),~-,z2(N-M +D)]",

P’(N-M +IN-M +2) =gl
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we can recursively calcul ate the one-step backward-time
predicced mean and covariance of the dtate

(X°(c+D, PK+D) for k=N =M o1

Accordingly, we can obtain the forward-time filter and
the one-step backward-time prediction of s(k) and their

variances, denoted respectively as (éf(k|k), P, (k|k))
and (&(Kk+1), P, (Kk+D).

A smoothed estimate of s(k) can then be obtained by
combining §' (klk) and §°(klk +1) , such as

Pt (k) =P (kk) + Py (Kl +1) ©)

8(k) = P (k)P (KK)3" (KK) + P3(klk + & (kk +1))
(6)

When the clean speech was avalable, the above
smoothing agorithm could be directly applied for speech
enhancement, by estimating the forward in time LP
parameters and the backward in time parameters, directly
from the clean speech.

However, in practice, only the noisy speech is available.
For this reason, an EM algorithm based approach is
considered.

In this framework, <(2),---,s(N) define the so-called
complete data whereas z(1),---,2(N) are the so-called
incomplete data. The ordinary ML estimation consists in
maximizing the likelihood of the complete data
g1, --,s(N) . Since the complete data are not available,
estimating the LP modéd parameters can be done through
the maximization of the conditional expectation of the
likelihood. This leads to the iterative and successive
processing of the so-called M-step and E-step. During the
M-step, the LP parameters are estimated by means of the
estimated complete data $(1),--+,S(N) . These quantities
can be obtained during the E-step by using the estimated

LP parameters ©P,6" obtained during the former M-step
and by applying a Kaman algorithm. Here, the above
dua-filter-based smoother is used.

The procedure can be described as follows:

Step 1 Initidization: select the initiad parameter
esimates &P , &2, and for i =01, until
convergence;

Step 2 Expectation: based on the estimated parameters
@ip ,@ib in the i" iteration, exploit the proposed
dual-filter-based smoother to calculate the
enhanced speech of the analysed frame in the i
iteration, denoted as S (k) ;

Step 3 Maximization: based on the estimated speech
§(k) a the i" iteration, re-estimae the

parameters of the forward in time LP mode and
the backward in time LP model for the i+1"
iteration;

Step 4 Convergence test: if the convergence test is not
satisfied, then go to Step 2.

3.RESULTS

The comparative study is carried out with speech signa
sampled at 8kHz. The length of the frame N is equal to
256 and an overlap of 50 % is used.

First of al, we assume that the clean speech is available,
like in [11]. Figure 2 shows the plots of the clean speech,
the noisy speech with a Signal to Noise Ratio (SNR) equal
to 5 and the enhanced speech using the proposed dual-
filter-based smothering agorithm. Table 1 shows the
comparison of the SNR improvement for the KF based
enhancement algorithm [11] and the proposed DFBS
based enhancement algorithm, for the input SNR ranked
from —10dB to 15dB.

input SNR (dB) 10/ 5]0] 5 [10]15
KF[11]: output SNR (dB) |2.2[4.2|6.8]99[135[18.8
DFBS: output SNR (dB) |2.95.1|8.0(11.2[14.6/19.2

Table 1. comparison of DFBS based
enhancement algorithm and KF based
enhancement algorithm over SNR

The second part of our simulations is completed when
only noisy speech is available. At that stage, we use EM
algorithms for speech enhancement, in which the E-step
are respectively based on KF and DFBS. The convergence
test rule is taken as follows: If the difference of SNR
improvement between two neighboring iterations is less
than 0.1dB, the convergence of the performance is
achieved. The comparison of the SNR improvement of the
two agorithms is showed in Table 2. The average
iteration numbers (AIN) in a frame for the two agorithms
are showed in Table 3. From Tables 2 and 3, it is obvious
that the proposed DFBS based EM algorithm has more
SNR improvement and less iteration numbers than the KF
based EM dgorithm.

input SNR (dB) 10 5]o0]5]10]15

KF-EM: output SNR (dB) |1.6|3.6|6.4|9.7|13.3|17.2

DFBS-EM: output SNR (dB) [1.8(4.1|7.1(10.6/14.3({18.1

Table 2. comparison of DFBS based EM
agorithm and KF based EM algorithm

input SNR (dB) 0[5 0[5 [10]15
KF-EM: AIN 45[41[40(39[36(30
DFBSEM: AIN 34(31[30[2929][28

Table 3. comparison of average iteration
numbers (AIN) of DFBS based EM
algorithm and KF based EM algorithm
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Figure 2. (a) clean speech. (b) noisy speech
with SNR=5dB. (c) enhanced speech
using DFBS.

4. CONCLUSION

The Kaman Filter has been widely used in many areas
from tracking to speech enhancement. Since the speech
signal is often assumed stationary during an analysed
frame (20-30 ms), the Kalman smoother can be carried out
and provides better estimates of the state since it is based
on a higher number of observations. However, the
enormous storage requirements of the Kalman smoother
confine its applications in practice. In this paper, our
purpose was to present an aternative to the Kaman

smoother, named dual-filter-based smoother (DFBS),
which does not require such a storage space for the
vectors and matrices during the Kalman filtering process.
The evaluation of the DFBS-based speech enhancement
agorithm has been performed in comparison to the KF
based speech enhancement algorithm. The results show
that the proposed DBFS based algorithm can provide a
higher SNR improvement than the KF based algorithm.
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