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ABSTRACT rithms is proposed and assessed. The first isixeure-Maximum
(MIXMAX) algorithm [5]. The second is th@ptimally modified
‘log spectral amplitudestimator (OM-LSA) [6].

The scenario of the problem is presented in Section 2. The
TF-GSC is briefly reviewed in Section 3. The proposed multi-
microphone postfilter is presented in Section 4. Section 5 is de-
voted to the assessment of the proposed method and to a compari-
son with the single microphone postfilters.

In speech enhancement applications microphone array postfilte
ing allows additional reduction of noise components at a beam-
former output. Among microphone array structures the recently
proposedGeneral Transfer function Generalized Sidelobe Can-
celler (TF-GSC) has shown impressive noise reduction abilities
in a directional noise field, while still maintaining low speech dis-
tortion. However, in a diffused noise field less significant noise
reduction is obtainable. The performance is even further de- 2. PROBLEM FORMULATION

graded when the noise is nonstationary . In this contribution we

present three postfiltering methods for improving the performance Consider an array of sensors in a noisy and reverberant environ-
of microphone arrays. Two of which are based on single-channelment. The received signal is comprised of three components. The
speech enhancers and making use of recently proposed algorithmsirst is a speech signal, the second is some stationary interference
concatenated to the beamformer output. The third is a multi- signal and the third is some nonstationary (transient) noise com-
channel speech enhancer which exploits noise—only componentsonent. Our goal is to reconstruct the speech component from the
constructed within the TF-GSC structure. An experimental study, received signals. Let;,(t) be them-th sensor signals(t) be
which consists of both objective and subjective evaluation in vari- the desired speech soureg, (t) andn?, (t) be the stationary and

ous noise fields, demonstrates the advantage of the multi-channefransient noise components, respectively. Note, that both noise

postfiltering compared to the single—channel techniques. components might be comprised of coherent (directional) noise
component and diffused noise componeii, (¢, e’“), S(t, /),
1. INTRODUCTION Ny (t,€’*) and N}, (t,e’) are the short time Fourier transforms
(STFT) of the respective signalsd...(¢’) is the frequency re-
Recently, an extension to the classical Griffiths & JBeneral- ~ SPonse of then-th acoustical transfer functioATF) from the

ized Sidelobe Cancell¢6SC), which deals with arbitrary transfer ~ SPeech source to the-th sensor, assumed to be time invariant
functions (TFs), was suggested by Gannot et al. [1]. Although Qurlng the analysis period. We have in the time—frequency domain
providing good results in the directional noise case, there is a sig-in & vector form,
nificant degradation in the performance of the array, in nondirec- jw jw jo jw jw
tional noise environments such as thifused noisease. Further- Z(t, ") = A(e™)S(t ™) + No(t, ') + Noft, ) (1)
more, as noise statistics might change over time (nonstationary,yhere
noise framework), the expected performance is even lower. The
use of postfiltering is therefore called upon to improve the beam-  Z7(t,e’) = [ Z(t,e7%) Za(t,e’) -+ Zu(t, %) ]
forming performance in nondirectional and nonstationary noise - - -
enviror?mpents. Postfiltering for the simpbelay and Sunloegm- ) [Al(ej ) Az(e?) - An(e? )]
former based on the Wiener filter was suggested by Zelinski [2].  NT'(t,e’) = [ Ni(t,e’*) N3(t,e) - - Ni(t,e’)]
Later, tfiltering was incorporated into the Griffith im . X .
bzsmfg(r);er ?3].9 as incorporated into the G s & Jim GSC ) [Nf(m 7Y Ni(t, &) - Nf\/[(t,eﬂw)] .

A method dealing with nonstationary noise sources was first
suggested by Cohen and Berdugo [4]. This postfiltering method is
working in conjunction with the classical Griffiths and Jim GSC 3. SUMMARY OF THE TF=GSC ALGORITHM
beamformer and making use of both the beamformer output and
noise reference signals resulting from the blocking branch, thus An approach for signal enhancement based on the desired signal
constituting multi-microphone postfiltering. nonstationarity was suggested by Gannot et al. [1]. Theni-

In this paper we extend this method and incorporate it into the crophone signals are filtered by a corresponding sét/dilters,
TF-GSC beamformer suggested by Gannot et al. [1]. This method W%, (¢,e’) ;m = 1,..., M, and their outputs are summed to
is assessed in various noise fields and compared with the singleform the beamformer outpu; (¢, e’*) = W (t, /) Z(t, e?*).
microphone postfilters. Furthermore, the use of two modern algo- W' (¢, &) = [W7(t,e/) Wy (t,e*) -+ Wir(t,e*) ],
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* denotes conjugation and denotes conjugation transpose. 4. MULTI-MICROPHONE POSTFILTER

W (t, ) is determined by minimizing the output power subject

to the constraint that the signal portion of the output is the de- In this section, we address the problem of estimating the noise
sired signal,S(t, e’*), up to some pre-specified filteF* (¢, /) PSD at the beamformer output, and present the multi-microphone
(usually a simple delay). This minimization can be efficiently im- postfiltering technique. Desired speech components are detected
plemented by constructing a GSC structure as depicted in Fig-at the beamformer output, and an estimgte e’“) for thea pri-

ure 1. The GSC solution is comprised of three components: A ori speech absence probability is produced. Based on a Gaussian
statistical model [7], and a decision-directed estimator forghe
priori SNR under signal presence uncertainty [6], we derive an

e —f estimatorp(t, e’*) for the speech presence probability. This esti-
72t ™ xrt Vewe (1, ') N YO mator controls the components that are introduced as noise into the
Za(t. ) —=>— = W, ~F PSD estimator. Finally, spectral enhancement of the beamformer

: et o) output is achieved by applying an OM-LSA gain function, which
Zna (b, 7)) —> |

R I minimizes the mean-square error of the log-spectra [6].
‘ Let S be a smoothing operator in the power spectral domain,
— defined by
SY (t,e") = as - SY (t — 1,7)+ (3)
Q
(1—as) D b)Y (t )P
w/'=—Q

wherea; (0 < as < 1) is a forgetting factor for the smoothing in
time, andb is a normalized window functionzjfj,z_Q b(ej“') =

_ 1) that determines the order of smoothing in frequery is the
fixed beamformer (FBF) implemented BY{ (¢, ¢’), ablocking  frequency bandwidth). LetA denote ainima Controlled Recur-
matrix (BM) implemented byH'(e?*) that constructs the noise  sjve AveragindMCRA) estimator for the PSD of the background
reference signals (both stationary and transient components) angseudo-stationary noise [8]. Then, we defirtesaasient beam-to-
a multi-channel noise canceller (NC) implemented by the filters reference ratiq TBRR) [4] by

G(t,e’”). The filters G(¢,e’”) are adjusted to minimize the

Fig. 1. GSC solution for the general TFs case (TF-GSC).

power at the outpufy” (¢, ej“’), exactly as in the classical Widrow W(t, efw) = 4)
problem. The filters are usually constrained to an FIR structure Jwy Jw

for stabilizing the update algorithm. Note that, the role of mini- max {SY(t, ) My(tjcf ), 0} _
mization [by adjustingG (¢, ¢’*)] and constraining [by applying max {{SUnm(t,e7*) = MUn(t, /) } 7y, e MY (t, €7)}

jow i i
W (t,e?)] operations are decoupled by this structure. where< is a constant (typically = 0.01), preventing the de-

~ Although an exact knowledge of the ATE&(e’*) would  gminator from decreasing to zero in the absence of a transient
yield distortionless reconstruction of the desw_gd speech signal, it yo\ver at the reference signals. This gives a ratio between the tran-
has been shown that the ATFs ratio alod#(c’*) may be suf-  gjent power at the beamformer output and the transient power at
ficient in practice. A sub-optimal FBF block, which aligns the e reference signals, which indicates whether a transient compo-
desired S|gna]_wcomponents but does not eliminate the reverberayent js more likely derived from speech or from environmental
tion term A, (¢’) was used. The following/ x (M — 1) matrix noise. Assuming that the steering error of the beamformer is rel-

H(e’*) can serve as a blocking matrix, atively low, and that the interfering noise is uncorrelated with the
desired speech, the TBRR is generally higher if transients are re-
CAN(Y)  A5(Y) SCE lated to desired sources. For desired source components, the tran-
Aj(edw)  Af(edw) TTT o Af(edV) sient power of the beamformer output is significantly larger than
. 1 0 e 0 that of the reference signals. Hence, the nominator in (4) is much
H(e™™) = 0 1 0 - @ larger than the denominator. On the other hand, for interfering

transients, the TBRR is smaller thansince the transient power

of at least one of the reference signals is larger than that of the
beamformer output. By modifying the speech presence probabil-
ity based on the TBRR, we can generate a double mechanism for
where, the ATFs ratio vectoiHl (e’*), is assumed to be known.  nonstationary noise reduction: First, through a fast update of the
However, in practiceH (e’*) is not known and should be esti- noise estimate (an increase in the noise estimate essentially results
mated. An estimation method based on the desired signal nonstain lower spectral gain). Second, through the spectral gain compu-
tionarity was suggested in [1]. This estimation method is based tation (the spectral gain is exponentially modified by the speech
on two assumptions. First, it is assumed that the ATFs ratios arepresence probability [6]).

slowly changing in time compared to the time variations of the de- Let vs(t,e7¥) 2 |Y(t,e/) |2/ MY (t,e’*) denotea poste-
sired speech signal. Second, it is assumed that no transient noiseiori SNR at the beamformer output with respect to the pseudo-
component is active during the analysis interval, i.e. the noise stationary noise. Then, the likelihood of speech presence is high
statistics is assumed to be fixed. These assumptions are exploitednly if both v, (t, e7*) and«(t, ') are large. A large value of

for deriving a set of equations for the same unknown ATFs ratio. v, (t, e*) implies that the beamformer output contains a transient,
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while the TBRR indicates whether such a transient is desired or in- or interfering transients, the TBRR as defined in (4) is relatively

terfering. Therefore, small (compared ta);,.,). Accordingly, thea priori speech ab-
) ) . sence probability (5) increasestpand the speech presence prob-
Lo if s (2, €7) < yiow or P(L, €7%) < Yrow ability (7) decreases @ As the probability of speech presence de-
(t, &%) = e { Vnigh =75 (6:65°) Prign—(t,e*) } creases, the smo_othing_parameter gets smaller, fac_ilitating afas;er
Yhigh—Yiow ° Yhigh—%iow ' J° update of the noise estimate. In particular, the noise estimate in
otherwise, Eq. (10) is able to manage transient as well as stationary noise
(5) components. It differentiates between transient interferences and
can be used as a heuristic expression for estimating theori desired speech components by using the power ratio between the
speech absence probability. It assumes that speech is surely absegkamformer output and the reference signals.
if either v (t, e’) < yi0w Or ¥(t, €’*) < 100. Speech presence An estimate for the clean signal STFT is finally given by
is assumed ifys(t,e’”) > Apigh andp(t, e’”) > Ppign. The . _ _ _
constants);o,, and g, represent the uncertainty in(t, e’«) S(t, &) = G(t, )Y (t,€7), (11

during speech activity, angh,., and yn:4n represent the uncer-
tainty associated with (¢, ’“’). In the regionsys € [Yiow, Yhign)
andy € [iow, PYrign] We assume thaf(t, ') is a smooth bilin- . ypter®) (i)

ear function ofy, (¢, ¢’*) andqy(t, e7*). G(t,e™) = {GH1 (t, e )} “Groin 12)

Based on a Gaussian statistical model [7], the speech presenc . .
probability is given by [7] P P |es the OM-LSA gain function and..;, denotes a lower bound

' constraint for the gain when speech is absent.
p(t, ) = (6)

q(t,e’*) Jjw —u(t, e B
{1+ Taiama s eniut o)

where

5. EXPERIMENTAL STUDY

In this section we apply the proposed postfiltering algorithms to
o s o o the speech enhancement problem and evaluate their performance.
where&(t, e’) & E{|S(t,e’*)[*} /A(t,e’”) is thea priori We assess the algorithms’ performance both in a conference room
SNR,A(t, ¢’“) is the noise PSD at the beamformer output (includ- scenario and in a car environment and compare the single mi-
ing the stationary as well as the nonstationary noise components),crophone postfilters (MIXMAX and OM-LSA) with the Multi-

u(t,e1) 2 (L, eI°) E(t, e7°) /(1 + £(t,€7¥)), andy(t, &) 2 Microphone algorithm.
|y(t, eJ'W)|2 /A, eJ'W) is thea posterioritotal SNR. Thea priori The enclosure is a conference room with dimensioms x
SNR is estimated using a “decision-directed” method [6] : 4m x 2.8m. A linear array comprised of four microphon&®crn
R _ _ ) long was placed on a table at the center of the room. Two loud-
£(t, ) =aGh, (t—1,e/)y(t — 1,")+ () speakers were used. One, at the left of the arfagn¢ from its

center), for the speech source and the other, at the right of the ar-
ray (1.2m from its center), for the noise source. The speech source
was comprised of four TIMIT sentences with various levels. The
microphone inputs were generated by mixing speech and noise
components, that were created separately at various SNR levels.

oo a E(tE) 1 [ o We considered three noise sources: a point source, a diffused
G (t, &) & b o5/ dz) (®

(1 — @) max {fy(t7 ) — 1,0}

whereq is a weighting factor that controls the trade-off between
noise reduction and signal distortion, and

W 5 source, and_a nonstationary diffusgd source. In order to generate
’ the point noise source, we transmitted an actual recording of fan
is the spectral gain function of tHevg-Spectral Amplitud€_SA) noise (low—pass PSD) through a loudspeaker. The diffused noise
estimator when speech is surely present [9]. source was generated by simulating an omni—directional emittance
The noise estimate at the beamformer output is obtained by Of @ flat PSD bandpass filtered noise signal. The third was the same
recursively averaging past spectral power values of the noisy mea-diffused noise source but with alternating amplitude to demon-
surement. The speech presence probability controls the rate of theéStrate the ability of the algorithm to cope with transients in the
recursive averaging. Specifically, the noise PSD estimate is givenN0iSe signals.

(teiw) T

by The car scenario was tested by actual (separate) recordings of

R _ a speech signal comprised of the ten English digits and the car
Alt+1,e7Y) = 9) noise signal. The windows of the car were slightly open. Tran-

ax(t, ejw)j\(t, ) 4 8. [1— an(t, ejw)]‘y(t7 ejw)|2 sient noise is received as a result of passing cars and wind blows.

The stationary component of the noise results from the constant
whered, (t, e?) is a time-varying frequency-dependent smooth- hum of the road. Four microphones were mounted onto the visor.
ing parameter, and is a factor that compensates the bias when The microphone signals were generated by mixing the speech and
speech is absent. The smoothing parameter is determined by théoise signals with various SNR levels.
speech presence probabilipft, e’*), and a constantvy (0 < Three objective quality measures were used to asses the al-
ax < 1) that represents its minimal value: gorithms’ performance. The first objective quality measure is the
noise leve(NL) during nonactive speech periods, defined as,

) NL = Mean h ive101log, o (E(t))}
When speech is preseit, (t, e’*) is close tol, thus preventing respeech nonaci 10
the noise estimate from increasing as a result of speech compowhere E(t) = > . y2(7), y(t) is the signal to be assessed
nents. In case of speech absence and stationary background noig@oisy signal or algorithm’s output) arifi are the time instances

ax(t,e’) & ax+ (1 —ax) p(t, ). (10)
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corresponding to segment numberNote, that the lower the NL
figures are the better the result obtained by the respective algo-
rithm is. The second objective speech quality measure which is
with better correlation wittmean opinion scoréMOS) is thelog
spectral distanc€LSD) defined by,

LSD

LSD = Meantespeech active

{V/Meang {[201og0 [5(7, €37)] — 20 logyy [V (1, )P} }

Recall thatS (¢, ') andY (¢, ¢?) are the STFT of the input and
assessed signals, respectively. Note, that a lower LSD level corre-
sponds to better performance. The third figure of merit is the well—
known weighted segmental SNR/-SNR). This measure applies
weights to the segmental SNR within frequency bands. The fre-
guency bands are spaced proportionally to the ear’s critical bands,
and the weights are constructed according to the perceptual quality
of speech.

The NL figure of merit is shown in Figure 2 for the four noise
conditions. It is evident from Figure 2 that the residual noise level
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Fig. 2. Mean Noise Level (NL) during nonactive speech periods. [5]
obtains its lowest level by using the multi-microphone postfilter
for each of the noise sources. In the stationary noise cases the [6]
performance of the two single—channel postfilters (MIXMAX and
OM-LSA) is comparable although somewhat degraded related to
the multi-microphone postfilter. Thus, the advantage of using the [7]
multi-microphone postfilter instead of the single-microphone post-
filters is less significant. The TF-GSC beamformer obtains better
results in the directional noise source, and accordingly, the role of
all postfilters is not as crucial as in the diffused noise field case.
The LSD results are depicted in Figure 3. Generally speak-
ing, the best performance (lowest LSD) is obtained with the Multi-
Microphone postfilter. Its importance is more evident in the non-
stationary noise cases (nonstationary diffused and car noise). In
the directional (and stationary) noise field the performance of the [10]
MIXMAX postfilter and the multi-microphone postfilter is almost
identical. However, the TF-GSC obtains quite good results with-
out any postfilter. The results manifested by the W-SNR quality
measure are in accordance with the previous discussion. Subjec-
tive evaluation of sonograms and non—formal listening tests vali-

(8]

(9]
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Fig. 3. Mean LSD during active speech periods.

dates these conclusions. Examples of the processed speech signals
can be found at [10].
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