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ABSTRACT 
In this paper a symmetric feedback implementation scheme of a 
two microphones speech enhancement is presented. We consider 
the coupling systems modeled as a linear time-invariant Finite 
Impulse Response (FIR) filters and propose a new recursive-
based adaptive filter solution to enhance the noisy speech. The 
optimum filter weight adaptation is based on a Double Affine 
Projection Algorithm (DAPA). This approach can be extended 
for a subclass of signal separations where the direct link is 
stronger than the interference link in the both channels. A 
comparative study with other adaptive algorithms shows the 
superiority of the DAPA in performances improvement. 

1. INTRODUCTION 

Let us consider the system modelled by the diagram represented 
in the figure 1. The purpose is to recover the free noise speech 
signal  from the two available observations  and 

 in the presence of the noise signal b . 
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Figure 1. Signal model for noise cancellation 

The general technique of adaptive noise canceling has been 
applied successfully to a number of problems. The initial work 
on adaptive noise canceling began in the 1960s. Adaptive noise 
canceling refers to a class of adaptive enhancement algorithms 
based on the availability of a primary input source and a 
secondary reference source ( 0)(1 =ωH

b

). The primary input 
source  is assumed to contain the speech signal  plus 
an additive noise b , and the secondary or the reference is 
assumed to contain only a realization of a stochastic process 

 that is correlated with the noise  but not with the 

speech signal . The basic scheme of adaptive noise 
canceller given in [17] uses an adaptive filter based on the Least 
Mean Squares (LMS) algorithm for estimating the additive noise, 
which is then subtracted from the primary input (see Figure 2). 
One problem with the adaptive noise canceling algorithm is the 
need for the reference microphone to be well separated from the 
primary microphone, so that it picks up as little speech as 
possible. If the microphones are too close to one another, cross 
talk occurs and a typical adaptive filter will thereby suppress a 
portion of the input speech characteristics. One means of 
addressing this problem is to place a second adaptive filter in the 
feedback loop. 
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Figure 2. Basic scheme of adaptive noise canceller 

In the simplified case where the filters )(1 ωH  and )(2 ωH

)(1

 are 
assumed to be single tap another system called Symmetric 
Adaptive Decorrelation (SAD) using two adaptive filters, as an 
extension of the classical LMS acoustic noise canceller, has been 
presented in [2]. This result has been later generalized to a 
convolutive mixtures modeled by two FIR filters ωH  and 

)(2 ωH  [8]. 

Adaptive algorithms for separation of wide-band signal, under 
the condition of fourth-order white noise, for convolutive 
mixtures modeled by FIR filters has been proposed in [11][12] 
based on the cancellation of 4th-order output cross-cumulants. 
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The feedback implementation of an adaptive noise canceller (see 
Figure 3) has been proposed in [15] using Double Least Mean 
Squares (DLMS) algorithm. Other noise cancellers using two 
adaptive filters: feedforward and feedback symmetric adaptive 
noise canceller have been described in [4][3][16][14][10][9]. 

In this paper we present a new feedback implementation of a 
noise canceller based on the DAPA algorithm. We only suppose 
that the speech signal and the noise are statistically independents 
and we consider the coupling systems being FIR filters. This 
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or [5]: algorithm can also be used for a subclass of signal separations 
where the direct link must be stronger than the interference link 
in the both channels. A comparative performance study is 
presented in the framework of noise cancellation. 
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The remainder of the paper is organized as follows. In the next 
section we present the Double Fast Affine Projection Algorithm. 
A comparative experimental study of different schemes and 
algorithms is presented in section 3. We conclude by evaluating 
the performance of the proposed system. 
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We can see that the equations (5) provide multiple solutions. 
Among all these solutions we can find the “desired solution” 

)()( ωω ii HW = , 2,1=i . In this case it is easy to verify that 
)()(1 nsns = and )(nb)(2 ns =  and it is possible to recover the 

signals that would have been measured at each microphone in the 
absence of the other source signal. 

2. THE DOUBLE FAST AFFINE PROJECTION 
(DAPA) ALGORITHM 

Figure 3 shows the feedback implementation of the noise 
canceller. )(1 ωW  and )(2 ωW  are two adaptive filters. Each one 
has as input the output error signal of the other filter. )(1 ωW  is 
an adaptive filter which has an input signal , a desired 
signal  and an error signal . 

)(1 ns
))(n2p )(2 ns (2 ωW  is an adaptive 

filter which has an input  and an error signal . )(2 ns )(1s n

If for each generating filter: 

 1,21,)(2 =<∑ inhi  (8) 

then the filters )(ωiW  ( 2,1=i ) converge to the desired 
solutions. 
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These desired solutions can be reached using a weight adaptive 
filters updating based on the LMS or RLS algorithm. We propose 
to use the APA algorithm for the following reasons. The affine 
projection algorithm is a generalization of the well-known 
Normalized Least Mean Square (NLMS) algorithm [6]. Under 
this interpretation, each tap weight vector update of NLMS is 
viewed as a one-dimensional affine projection. In APA the 
projections are made in multiple dimensions. As the projection 
dimension increases, so does the convergence speed of the tap 
weight vector, and unfortunately, the algorithm’s computational 
complexity. Using techniques similar to those which led to fast 
recursive least squares [1], a fast version of APA may be derived 
[7]. The affine projection algorithm, is a relaxed and regularized 
form [7]. The Double Affine Projection Algorithm (DAPA) is 
defined as follows: 

Figure 3. Feedback implementation of the noise 
canceller 

The optimum values in the Wiener sense, in the case of wide 
sense stationary processes and in term of the power density 
spectrum, of the filters )(1 ωW  and )(2 ωW  are given by [13]: • Filtering: 
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and if we suppose that the speech signal  and the noise 
 are two uncorrelated processes we can rewrite (1) and (2) 

as follows: 

)(ns
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 [ ]tN nwnwnw )(,),()( 1,20,22 2 −= L  

• Filters update: 

 [ ] )()()()()1()( 2
1

1111111 nsnnnnwnw t −
++−= ISSS δµ  (11) 
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1

2222222 nsnnnnwnw t −
++−= ISSS δµ  (12) 

The scalars iδ  ( 2i ) is the regularization parameters for the 
sample autocorrelation matrix inverse used in (11) and (12). 
Where  may have eigenvalues close to zero, creating 

problems for the inverse,  has 

,1=

)n((t
iS )n iS

ISS ii
t
i nn δ+)()( iδ  as its smallest 

eigenvalue which, if large enough, yield a well behaved inverse 
[7]. The step-size parameter, iµ  ( 2,1=i ) is the relaxation factor. 
As in NLMS, the algorithm is stable for 0 2<≤ iµ . 

Figure 4b: The signal  captured by the second 
microphone and its spectrogram (SNR = 3.79 dB) 

)(2 np

3. SIMULATION RESULTS 
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The noise has been separately recorded in a car moving in five 
different conditions, the microphone is placed in front of the 
driver and the noises have been artificially added to the noise-
free speech so that one would master the SNR input. The 
coupling systems are 10 taps two FIR filters with. 

An example of one signal captured by the first microphone 
 and another by the second microphone  is 

respectively shown in figure 4a and 4b. In this case the SNR of 
 and  are respectively 3.09 dB and 3.79 dB. 
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The output signal of the noise canceller system using the DAPA 
algorithm ( 121 == µµ ) is shown in the figure 5. The first 
original desired speech signal  is shown in the figure 6. )(1 ns

Figure 5: Enhanced speech  obtained with the 
noise canceller system based DAPA algorithm and its 
spectrogram (L = 4, 

)(1 ns

121 == µµ , SNR = 15.70 dB) 

0 1 2 3 4 5 6

-2

-1

0

1

2
x 10

4

Time (s)

A
m

pl
itu

de

Time (s)

Fr
eq

ue
nc

y 
(H

z)

0 1 2 3 4 5 6
0

1000

2000

3000

4000

 

0 1 2 3 4 5 6

-2

-1

0

1

2
x 10

4

Time (s)

A
m

pl
itu

de

Time (s)

Fr
eq

ue
nc

y 
(H

z)

0 1 2 3 4 5 6
0

1000

2000

3000

4000

 

Figure 4a: The signal  captured by the first 
microphone and its spectrogram (SNR = 3.09 dB) 
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Figure 6: The original speech signal  )(ns
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A comparative SNR output gain between the Double SAD [8], 
the Extended LMS [16], the Double LMS [15] and the DAPA 
algorithms is provided in table 1. This table shows the 
superiority of the noise canceller DAPA based algorithm. 
 

Gain SNR (dB)  )(1 ns

C
as

e 

Input 
SNR 
(dB) 

 )(1 np
SAD 
[8] 

ELMS 
[16] 

DLMS 
[15] 

DAPA 
L=2 

DAPA 
L=4 

1 10.48 7.65 9.10 9.77 10.73 10.86 

2 2.45 13.54 13.48 13.22 14.32 14.43 

3 11.40 8.30 8.36 7.93 8.86 8.98 

4 9.97 11.18 11.15 12.35 13.59 13.72 

5 3.09 13.05 12.06 14.74 15.70 15.87 

Table 1: The SNR gain of  for different algorithms )(1 ns

This global performance behaviour is confirmed also by the 
frame by frame SNR output. The SAD algorithm and the ELMS 
algorithms take more time before handling the noise field after 
which its segmental SNR behaviour is close to the segmental 
behaviour of the DAPA algorithm. As for the Normalized LMS 
[17], its segmental SNR behaviour is always lower since it is 
penalized by its slow convergence and therefore can’t track the 
statistical change of the noise between two successive frames. 
However, during high-energy regions, its behaviour is close to 
the two other algorithms. The reason is that noise is masked by 
the high-energy speech regions, and hence does not require 
complex treatment. 

4. CONCLUSION 

In conclusion, in this paper we have presented a noise canceller 
system based on the Double Affine Projection algorithm. 
Different aspects, such as the convergence, global and segmental 
SNR and subjective quality, have been considered. We have 
shown the superiority of the presented algorithm compared to the 
Double SAD, the Extended LMS and the Double LMS 
algorithm. Furthermore, the structure based on the coupling FIR 
filters permits the DAPA algorithm to be also used as signal 
separators or signal deconvolvers rather than only a simple noise 
canceller. 

Informal quality and intelligibility tests indicate also significant 
superiority of such algorithm to enhance speech signal. 

We should remark that the discussions about a complete 
mathematical convergence analysis are given in [5]. In this short 
paper we have preferred to focalise the presentation on the case 
where the physical solutions of the equations (1) and (2) are 
possible. 
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