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ABSTRACT
This paper introduces an adaptiveβ-order minimum mean
square error (MMSE) spectral estimator for the short time
spectral amplitude (STSA) of speech. The characteristic of
β-order MMSE attenuation function is introduced and an-
alyzed. The performance of the proposed adaptiveβ-order
MMSE has been thoroughly examined by a large number
of computer simulations. The new proposed scheme has
been found to outperform the conventional a priori SNR
Wiener filtering, the Ephraim& Malah STSA-MMSE and
Log Spectral Amplitude (LSA) schemes. It can achieve a
more significant noise reduction and a better spectral esti-
mation for weak speech components from a noisy speech
signal as compared to the conventional schemes.

1. INTRODUCTION

The main objective of speech enhancement is to reduce the
corrupting noise component of a noisy speech signal while
preserving the original clean speech quality as much as pos-
sible. Though research on speech enhancement has been
going on for a long time, issues such as distortions to the
original speech signal and residual noise sometimes in the
form of musical tones created by the enhancement algo-
rithms remain unsolved. A large number of research papers
on different approaches and methods have managed to ad-
dress these problems with varying degrees of success.

In most practical situations, speech signals are degraded
by additive noise in a car environment, air traffic control
communication, cocktail party environment, etc. Speech
enhancement is needed in these situations. It is also needed
for speech coding and speech recognition systems to im-
prove their coding and recognition performance.

For single microphone speech enhancement, many al-
gorithms, including conventional spectral subtraction [1],
speech estimation based on uncertainty of speech presence
[2], model based speech enhancement, the Ephraim& Malah
(EM) MMSE [3] and LSA [4], have been reported.

One of the main approaches of speech reduction algo-
rithms is to obtain the best possible estimate of the short
time spectra of a speech signal from a given noisy speech.
In [5], the proposed approach is to estimate the short time

spectral magnitudes,|Sk|, of a speech signal by minimizing
[|Xk|β −E{|Nk|β}]1/β for some constant values ofβ. k is
the frequency bin index,Sk, Xk andNk are Fourier trans-
forms of a windowed segment of speech, noisy speech and
noise, respectively.

The advantage of the EM noise suppression method is
built upon the non-linearity of the averaging procedure. When
the speech level is well above the noise level, the a priori
SNR estimation equation involves a mere one-frame delay,
and the estimate is no longer a smoothed SNR estimate,
which is important in the case of non-stationary signal [6];
when the speech signal level is close to or below the noise
level, the a priori SNR estimation equation has a smooth-
ing property and the musical tone phenomenon is greatly
reduced. Therefore, the total effect of noise suppression is
improved as compared to other conventional methods.

In order to investigate the characteristics and performance
of theβ-order MMSE method based on the assumption that
speech and noise spectral amplitudes are Gaussian distributed,
the use of the cost functionJ = E{(Aβ

k − Âβ
k)2} as an

estimation criterion is considered in this paper.Âk is the
estimate of spectral amplitude of the speech signal whose
spectral component isSk = Akejαk . To obtain a more ac-
curate estimate and achieve sufficient suppression of noise
as well as minimal musical tones in the residual signal, an
adaptiveβ-order MMSE method is discussed and its perfor-
mance analyzed.

2. β-ORDER MMSE SHORT-TIME SPECTRAL
SUPPRESSION

An observed noisy speech signalx(t) is assumed to be a
clean speech signals(t) degraded by uncorrelated additive
noisen(t), i.e.,

x(t) = s(t) + n(t), 0 ≤ t ≤ T. (1)

Let Sk = Akejαk , Nk, Xk = Rkejϑk denote thekth
spectral component of the clean speech signals(t), noise
n(t) and the observed noisy speechx(t), respectively. On
the basis of the Gaussian statistical model [3], we are look-
ing for the estimatêAk, which minimizes the following dis-
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tortion measure:

J = E{(Aβ
k − Âβ

k)2}. (2)

Under the assumed Gaussian statistical model, we obvi-
ously have [3]

Âk = β

√
E{Aβ

k |Xk}. (3)

Based on the above assumption, the evaluation ofE(Aβ
k |Xk)

is given by

E{Aβ
k |Xk} =

∫∞
0

∫ 2π

0
aβ

kp(Xk|ak, αk)p(ak, αk) dαk dak∫∞
0

∫ 2π

0
p(Xk|ak, αk)p(ak, αk) dαk dak

.

(4)
With the Gaussian model assumption,p(Xk|ak, αk) and

p(ak, αk) are derived in [3] and repeated below:

p(Xk|ak, αk) =
1√

πηn(k)
exp{−|Xk − akejαk |2

ηn(k)
}, (5)

p(ak, αk) =
ak√

πηs(k)
exp{− a2

k

ηs(k)
}, (6)

whereηn(k) = E[|Nk|2], andηs(k) = E[|Sk|2] are the
variances of thekth spectral components of noise and the
speech signal, respectively. On substituting Eqs. (5) and
(6) into Eq. (4), and using the integral representation of
the modified Bessel function of zero orderI0(.) [[7], Eqs.
8.406.3, 8.411.1, 6.631.1, 9.212.1] [4], we obtain

E{Aβ
k |Xk}

=

∫∞
0

aβ+1
k exp(−a2

k/η(k))I0(2ak

√
υk/η(k)) dak∫∞

0
akexp(−a2

k/η(k))I0(2ak

√
υk/η(k)) dak

= η(k)β/2Γ(β/2 + 1)M(−β/2; 1;−υk).

(7)

Γ(.) is the gamma function and M(α; γ; z) is the con-
fluent hypergeometric function [[7], Eq. 9.210.1], andη(k)
andυk are defined as follows:

η(k) = (
1

ηs(k)
+

1
ηn(k)

)−1, υk =
ξk

1 + ξk
γk, (8)

whereξk andγk represent the a priori SNR and a posteriori
SNR respectively [3, 4],

ξk =
ηs(k)
ηn(k)

, γk =
|Xk|2
ηn(k)

. (9)

The estimate of the amplitude of the speech signal is
then obtained by

Âk = [E{Aβ
k |Xk}]1/β

= η(k)1/2[Γ(β/2 + 1)M(−β/2; 1;−υk)]1/β ,
(10)

and the estimate of speech signal is given as follows:

Ŝk = Gβ(ξk, γk)Xk, (11)

hereGβ(ξk, γk) is the gain function which is given by

Gβ(ξk, γk) =
√

υk

γk
[Γ(β/2 + 1)M(−β/2; 1;−υk)]1/β .

(12)
Fig. 1(a) shows the gain curves of theβ-order MMSE

estimator in comparison with the Wiener estimator as a func-
tion of γk and ξk. Fig. 1(b) shows the gain curves with
differentβ values forξk equals to -5dB. The a priori SNR,
ξk, can be best estimated by the decision-directed approach
proposed in [3] and is described as follows:

ξ̂k(l) = (1− α)max(γk(l)− 1, 0)

+ α
|Gβ(ξ̂k(l − 1), γk(l − 1))Xk(l − 1)|2

ηn(k)
.

(13)

Normally, the parameterα is set to 0.98 [3, 6].
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Fig. 1. (a) Gain versus instantaneous SNR (γk−1) in comparison
with the Wiener gain (bold-dashed) forβ = 0.001 (dotted),β =
1.0 (dotdash),β = 2.0 (dashed) andβ = 4.0 (solid), and a priori
SNRξk = −15,−5, 5, 15dB; (b) Gain versus instantaneous SNR
(γk − 1), for differentβ values and a priori SNRξk = −5dB.

3. DISCUSSION ON CONSTANTβ VALUE AND A
NEW PROPOSAL OF ADAPTIVE β VALUE

From Fig. 1(a), it is noted that whateverβ value is, the gain
always converges to the Wiener gain value if the instanta-
neous SNR (γk−1) is big enough for a certain a priori SNR
ξk value. In Fig. 1(b), we can see that whenβ is very close
to 0 (β = 0.001), the gain curve is very close to the LSA
(EM) [4] gain curves. Whenβ = 1, it is exactly the same
as the STSA-MMSE (EM) [3] gain curve.

The elimination of musical tones of the STSA-MMSE
(EM) [3] scheme is described in [6]. It is mainly due to the
effectiveness of the so called ’decision-directed approach’

I - 853

➡ ➡



for estimating the a priori SNR,ξk. Obviously, this musical
tone elimination feature can also be applied to theβ-order
MMSE described by Eq. (12) for any value ofβ.

Fig. 2(a) shows the gain curves as a function ofβ for
differentξk values when the instantaneous SNR (γk − 1) is
equal to 0 dB. Fig. 2(b) shows the gain curves as a function
of β value, for different a posteriori SNR,γk, for the case
of a priori SNR,ξk, equals to 0 dB.

Fig. 2(a) shows that gain increases as the value ofβ
increases. Fig. 2(b) shows that the smaller the value of
the instantaneous SNR (γk − 1) is, the bigger the incre-
ment of gain (in dB) is asβ increases, for the case of 0 dB
a priori SNR. This particular characteristic of gain is very
important to speech recovery for the weak speech spectral
components. Usually, for conventional speech enhancement
methods, when a speech spectral component with high SNR
value is suitably enhanced by attenuating the spectral com-
ponent of the noisy speech signal with the appropriate gain
value, the weak speech spectral components will be overly
attenuated if the attenuation is applied to all the spectral
components of the same frame. Inβ-order MMSE, we can
exploit the relation betweenβ and gain by adjustingβ to a
proper value in order not to over-attenuate the weak speech
components in a frame. In other words, for a small value
of β used on a frame of noisy speech samples, the strong
speech spectral components can be appropriately enhanced
but the weak speech spectral components will be lost; when
the value ofβ is big, the strong speech spectral components
remain almost unchanged when attenuating the noise part
because the gain always converges to the Wiener gain value
when the a posteriori SNR is big enough. However the
weak spectral components may be appropriately enhanced
because the gain has a bigger increment asβ value is bigger
for a low a posteriori SNR.

If a big value ofβ is used for a speech absence frame,
the musical tones will be enlarged. If too small aβ value
is used in speech presence frame, the weak speech spectral
components will be lost although the musical tones will also
be very much attenuated in the same frame. If we increaseβ
value in a speech presence frame, the spectral components
with weak SNR will be raised and therefore they could be
better estimated, although the noise (musical tones) will be
enlarged correspondingly to a certain degree. Fortunately,
according to the acoustic masking principle, the weak mu-
sical tones could be masked by the strong speech signal at
the same time. The effects of bigβ value acting on the
strong speech frame and smallβ value acting on the low
SNR frame are the salient attributes of the proposedβ-order
MMSE method. Based on the above discussion, we arrive
at the appropriateβ value for a particular framel, i.e., we
can makeβ a functionF of frame SNRΞ(l). We express
the equation as follows:

β(l) = F(Ξ(l)). (14)

The frame SNR of the current framel can be defined as:

Ξ(l) = 10 log10

∑N/2
k=0

∣∣∣Rk(l)−
√

ηn(l, k)
∣∣∣
2

∑N/2
k=0 ηn(l, k)

. (15)

Based on the above observation, it is expected thatβ
will increase asΞ(l) increases, and it will decrease other-
wise. Here a linear relationship betweenβ andΞ(l) is ap-
plied as follows:

β(l) = α1Ξ(l) + α2, (16)

whereα1 andα2 denote linear coefficients. From Eq. (12),
we have a constraint condition: i.e.,β > 0. In practical
application, we can define the dynamic range ofβ value as

β(l) = max(min(α1Ξ(l) + α2, α3), α4). (17)
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Fig. 2. (a) Gain versusβ value for a priori SNRξk = -20, -10, 0,
10, 20 dB and instantaneous SNR (γk-1) = 0 dB; (b) Gain versus
β value for instantaneous SNR (γk-1) = -20, -10, 0, 10, 20 dB and
a priori SNRξk = 0 dB.

4. PERFORMANCE EVALUATION

We use noise data from the NOISEX-92 database in our per-
formance evaluation. The frame size for 16 kHz sampling
rate case is 512 samples, which are Hamming windowed
with 75% overlap between adjacent frames. The evalua-
tion parameters are as follows:α1=0.25,α2=1.75,α3=4.00,
α4=0.001,α=0.98.

A total of 10 different utterances from the TIMIT database
are used in our evaluation. Half of the utterances are male
and the other half female. Fig. 3 shows the average segmen-
tal SNR improvement arising from the use of Eq. (12) with
different values ofβ as well as in the case of our adaptive
β-order method based on Eqs. (12) through (17), where the
input segmental SNR is adjusted to -10dB, -5dB, 0dB, 5dB,
and 10dB respectively. From the figure, we can see that
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Fig. 3. Performance of the speech estimator based on Eq. (12)
for different β values (solid), and the proposed adaptiveβ-order
method (dashed) at 16 kHz sampling rate for the F16 cockpit noise
case.

the proposedβ-order method always outperforms the other
methods in terms of average segmental SNR improvement.

As the segmental SNR does not reveal the spectral char-
acteristics of the residual noise, another comparison was
made using speech spectrograms. The perceptual quality
of the enhanced speech is also assessed by means of subjec-
tive listening tests. From the speech spectrograms shown in
Fig. 4, it is clear that the proposed adaptiveβ-order MMSE
estimator could restore more spectral details of the original
speech as compared to the LSA scheme. Our informal sub-
jective listening tests also confirmed the better performance
of the proposed scheme.

5. CONCLUSION

The focus of our speech enhancement study is to develop
an optimal noise reduction algorithm that would maximize
noise reduction while minimizing speech distortion. In this
paper, the characteristics ofβ-order STSA MMSE is intro-
duced, and we propose an adaptiveβ-order STSA-MMSE
speech enhancement method based on the characteristics of
β-order MMSE to achieve very effective speech enhance-
ment. We compare the new adaptiveβ-order method with
other speech enhancement estimators through computer sim-
ulations to show the effectiveness of the proposed adaptive
β-order MMSE method. It has been verified through a large
amount of computer simulations that the proposed adaptive
β-order method outperforms many conventional methods
and has potential for minimizing both speech distortion and
residual noise, especially for the case of weak spectral com-
ponents of speech signal corrupted by noise.
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