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ABSTRACT spectral magnitude$Sy|, of a speech signal by minimizing
This paper introduces an adaptigeorder minimum mean (| Xx|? — E{|Nx[?}]'/* for some constant values 6f k is
square error (MMSE) spectral estimator for the short time the frequency bin indexSy, X, and N, are Fourier trans-
spectral amplitude (STSA) of speech. The characteristic offorms of a windowed segment of speech, noisy speech and
B-order MMSE attenuation function is introduced and an- Noise, respectively.
alyzed. The performance of the proposed adaptieder The advantage of the EM noise suppression method is
MMSE has been thoroughly examined by a large number built upon the non-linearity of the averaging procedure. When
of computer simulations. The new proposed scheme haghe speech level is well above the noise level, the a priori
been found to outperform the conventional a priori SNR SNR estimation equation involves a mere one-frame delay,
Wiener filtering, the Ephraind Malah STSA-MMSE and ~ and the estimate is no longer a smoothed SNR estimate,
Log Spectral Amplitude (LSA) schemes. It can achieve a Which is important in the case of non-stationary signal [6];
more significant noise reduction and a better spectral esti-when the speech signal level is close to or below the noise
mation for weak Speech Components from a noisy SpeecHeveL the a priori SNR estimation equation has a smooth-

signal as compared to the conventional schemes. ing property and the musical tone phenomenon is greatly
reduced. Therefore, the total effect of noise suppression is

improved as compared to other conventional methods.

In order to investigate the characteristics and performance
The main objective of speech enhancement is to reduce thef the 5-order MMSE method based on the assumption that
corrupting noise component of a noisy speech signal while speech and noise spectral amplitudes are Gaussian distributed,
preserving the original clean speech quality as much as posthe use of the cost functiod = E{(A} — A})*} as an
sible. Though research on speech enhancement has beegftimation criterion is considered in this papet; is the
going on for a long time, issues such as distortions to the estimate of spectral amplitude of the speech signal whose
original speech signal and residual noise sometimes in thespectral component iS, = Ae’“*. To obtain a more ac-
form of musical tones created by the enhancement algo-curate estimate and achieve sufficient suppression of noise
rithms remain unsolved. A large number of research papersas Well as minimal musical tones in the residual signal, an
on different approaches and methods have managed to adadaptive3-order MMSE method is discussed and its perfor-
dress these problems with varying degrees of success. mance analyzed.

In most practical situations, speech signals are degraded
by additiye noise ina car environment, air traffic control 2. 3-ORDER MMSE SHORT-TIME SPECTRAL
communication, cocktail party environment, etc. Speech SUPPRESSION
enhancement is needed in these situations. It is also needed

for SpeeCh COding and SpEECh recognition SyStemS to im-An observed noisy speech S|gnd|t) is assumed to be a

prove their coding and recognition performance. clean speech signalt) degraded by uncorrelated additive
For single microphone speech enhancement, many almoisen(t), i.e.,

gorithms, including conventional spectral subtraction [1],

1. INTRODUCTION

speech estimation based on uncertainty of speech presence x(t) =s(t) +n(t), 0<t<T. 1)
[2], model based speech enhancement, the Ephizditalah
(EM) MMSE [3] and LSA [4], have been reported. Let Sy = Apel™, Ny, X = Rpe/V* denote theith

One of the main approaches of speech reduction algo-spectral component of the clean speech sigigl, noise
rithms is to obtain the best possible estimate of the shortn(t) and the observed noisy speecft), respectively. On
time spectra of a speech signal from a given noisy speechthe basis of the Gaussian statistical model [3], we are look-
In [5], the proposed approach is to estimate the short timeing for the estimatel,,, which minimizes the following dis-
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tortion measure:

J = B{(47 — A})*}. (2)

and the estimate of speech signal is given as follows:

Sy = Gp(&x, ) Xk, (11)

Under the assumed Gaussian statistical model, we obvi-hereG 3(&, 1) is the gain function which is given by

ously have [3]

©)

A = E{AD|X}}.

Based on the above assumption, the evaluatidf(af, | X, )
is given by

aip(Xk lak, ar)p(ak, ar) day, day,

E{A}|X}} = Jo~ .
I ST p(Xklak, aw)plak, o) dog dag
(4)
With the Gaussian model assumptipQXy |ax, o) and
p(ak, ) are derived in [3] and repeated below:

_ gl [ Xk — axe Jok |2
p(Xklak, o) = ——r p{ (R b (®)
— Ok
p(akvak) - ’/TT]S(]C) p{ ( )} (6)

wheren,, (k) = E[|Ni|?], andns(k) = E]|Si/|?] are the
variances of the&sth spectral components of noise and the

speech signal, respectively. On substituting Eqgs. (5) andg P
(6) into Eq. (4), and using the integral representation of &

the modified Bessel function of zero ordgy(.) [[7], Egs.
8.406.3, 8.411.1, 6.631.1, 9.212.1] [4], we obtain

E{A| Xy}

:f0°°af“emp(—ai/n(k))fo@ak v /n(k)) day, @
Jo " avexp(=a /n(k))Io(2ax\/vi/n(k)) day,

= (k)T (B/2 + )M (—B/2;1; —vg).

I'(") is the gamma function and M(~; z) is the con-

fluent hypergeometric function [[7], Eq. 9.210.1], an)
andv,, are defined as follows:
ISR
ns(k) (k)
where¢,, and~, represent the a priori SNR and a posteriori
SNR respectively [3, 4],

ns (k)
nn(k))

)71 gk

w=ien ®

n(k) = (

Vk>

| Xk|?
N (k)

&k = Y = 9)

Gl ) = L [L(3/2+ DM(-3/2 1)1/
(12)

Fig. 1(a) shows the gain curves of theorder MMSE
estimator in comparison with the Wiener estimator as a func-
tion of v, and&,. Fig. 1(b) shows the gain curves with
different 8 values for¢;, equals to -5dB. The a priori SNR,

&k, can be best estimated by the decision-directed approach
proposed in [3] and is described as follows:

ék(l) = (1 - a)maz(v(l) — 1,0)
n a|Gﬁ(ék(l — 1), = 1D))Xp(l = 1?
nn(k) .

Normally, the parametet is set to 0.98 [3, 6].

(13)
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Fig. 1. (a) Gain versus instantaneous SNR { 1) in comparison
with the Wiener gain (bold-dashed) fér= 0.001 (dotted),5 =
1.0 (dotdash) 5 = 2.0 (dashed) an@ = 4.0 (solid), and a priori
SNR¢, = —15, —5, 5, 15dB; (b) Gain versus instantaneous SNR
(v& — 1), for different values and a priori SNB, = —5dB.

3. DISCUSSION ON CONSTANT 3 VALUE AND A
NEW PROPOSAL OF ADAPTIVE g VALUE

From Fig. 1(a), it is noted that whatev@wvalue is, the gain
always converges to the Wiener gain value if the instanta-
neous SNRA;, — 1) is big enough for a certain a priori SNR
&, value. In Fig. 1(b), we can see that whétis very close

to 0 (3 = 0.001), the gain curve is very close to the LSA

The estimate of the amplitude of the speech signal is (EM) [4] gain curves. Whem = 1, it is exactly the same

then obtained by
Ay = [E{A]|X,}]/7

= (k) *[L(6/2+1)M ¢

(=B/2;1; —vg)] /P,

as the STSA-MMSE (EM) [3] gain curve.

The elimination of musical tones of the STSA-MMSE
(EM) [3] scheme is described in [6]. It is mainly due to the
effectiveness of the so called 'decision-directed approach’
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for estimating the a priori SNR,. Obviously, this musical The frame SNR of the current franhean be defined as:
tone elimination feature can also be applied to fherder

MMSE described by Eq. (12) for any value 6f kN:/f) ‘Rk(l) —m(l, k)r
Fig. 2(a) shows the gain curves as a functionsdbr (1) = 101logy, N3 . (15)
different¢, values when the instantaneous SNR € 1) is k2o (L F)

equal to 0 dB. Fig. 2(b) shows the gain curves as a function
of 8 value, for different a posteriori SNRy, for the case
of a priori SNR ¢, equals to 0 dB.

Fig. 2(a) shows that gain increases as the valug of
increases. Fig. 2(b) shows that the smaller the value of
the instantaneous SNRy( — 1) is, the bigger the incre-
ment of gain (in dB) is ag increases, for the case of 0 dB

a priori SNR. This particular characteristic of gain is very wherea, andas, denote linear coefficients. From Eq. (12),
important to speech recovery for the weak speech spectral,s have a constraint condition: i.ed, > 0. In practical

components. Usually, for conventional speech enhancemengppncation, we can define the dynamic ranggoflue as
methods, when a speech spectral component with high SNR

value is suitably enhanced by attenuating the spectral com- B(1) = maz(min(c,2(1) + az, a3),aq).  (17)
ponent of the noisy speech signal with the appropriate gain
value, the weak speech spectral components will be overly
attenuated if the attenuation is applied to all the spectral

Based on the above observation, it is expected fthat
will increase as£(!) increases, and it will decrease other-
wise. Here a linear relationship betwegrand=(!) is ap-
plied as follows:

ﬂ(l) = alE(l) —+ Qag, (16)

components of the same frame. grorder MMSE, we can t 0@ i
exploit the relation betweefi and gain by adjusting to a —tm® | (0= 2008

1]

proper value in order not to over-attenuate the weak speech L . o

. o D--
components in a frame. In other words, for a small value g,

. Q Ek=* 0d
of 5 used on a frame of noisy speech samples, the stronggg%//g//

speech spectral components can be appropriately enhanceqm
but the weak speech spectral components will be lost; when /ﬂ/
the value of3 is big, the strong speech spectral components ™
remain almost unchanged when attenuating the noise part
because the gain always converges to the Wiener gain value
when the a posteriori SNR is big enough. However the @ (b)

weak spectral components may be appropriately enhanceq:ig_ 2. (a) Gain versus value for a priori SNR; = -20, -10, 0
because the gain has a bigger incremerit walue is bigger 10, 20 dB and instantaneous SNR.{1) = 0 dB; (b) Gai,n ver’su,s

fora Iow_a posteriori SNR- 3 value for instantaneous SNR-1) = -20, -10, 0, 10, 20 dB and
If a big value ofg3 is used for a speech absence frame, gz priori SNR¢, = 0 dB.

the musical tones will be enlarged. If too smalBavalue
is used in speech presence frame, the weak speech spectral
components will be lost although the musical tones will also
be very much attenuated in the same frame. If we incrgase

value in a speech presence frame, the spectral componen
with weak SNR will be raised and therefore they could be

Gain 20LOG
L

1) =0dB

s (y-1)=10d8

5 (1) =20dB

BN

4. PERFORMANCE EVALUATION

Rﬁle use noise data from the NOISEX-92 database in our per-

better estimated, although the noise (musical tones) will beformance gvaluatlon. The fra”.‘e size for 16 KHZ sz_;\mplmg
rate case is 512 samples, which are Hamming windowed

enlarged correspondingly to a certain degree. Fortunately,With 75% overlap between adjacent frames. The evalua-

according to the acoustic masking principle, the weak mu- _; - _ _
sical tones could be masked by the strong speech signal agorlg%?{njieorségre as follows; =0.25,0,=1.75,05=4.00,
tsr:;a or?gns]g etggﬁ .fr ;}2 z:]fgc;smglvtg?u\éa;ﬁi r?;t:)nng tﬁg It:v?/ Atotal of 10 different utterances from the TIMIT database

SNR frame are the salient attributes of the prop der are used in our evaluation. _Half of the utterances are male
: ) e . _and the other half female. Fig. 3 shows the average segmen-
MMSE method. Based on the above discussion, we arrive

at the appropriaté value for a particular frameé i.e., we tal SNR improvement arising from the use of Eq. (12) with

. - different values of3 as well as in the case of our adaptive
can makg@ a funcuonF_ of frame SNR=(1). We express B-order method based on Egs. (12) through (17), where the
the equation as follows:

input segmental SNR is adjusted to -10dB, -5dB, 0dB, 5dB,
B(1) =F(EQD)). (14) and 10dB respectively. From the figure, we can see that
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Fig. 3. Performance of the speech estimator based on Eq. (12)
for different 3 values (solid), and the proposed adaptBrerder
method (dashed) at 16 kHz sampling rate for the F16 cockpit noise
case.
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the proposed-order method always outperforms the other
methods in terms of average segmental SNR improvement.

As the segmental SNR does not reveal the spectral char-
acteristics of the residual noise, another comparison was
made using speech spectrograms. The perceptual quality © )
of the enhanced speech is also assessed by means of subjec-
S . P y J-rflg. 4. Speech spectrograms: (a) Clean speech (16kHz sampling
tlye I|st(_er_1|ng tests. From the speech spectrograms shown i late) (b) Noisy speech (F16 noise) with SegSNR = 0 dB (c) LSA
Flg.. 4, itis clear that the proposed adapt,ﬁ;@rder MMSI,E . estimated speech signal (SegSNR = 7.06dB) (d) Proposed adaptive
estimator could restore more spectral details of the original B-order estimated speech signal (SegSNR=7.98dB).

speech as compared to the LSA scheme. Our informal sub-

jective listening tests also confirmed the better performance )

Suppression Filter Using Self-Adaptive Estimator Of
Probability Of Speech AbsenceSignal Processing
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5. CONCLUSION \Vol.75, No.2, pp 151-159, June 1999.
The focus of our speech enhancement study is to develop [3] Y. Ephraim and D. Malah, “Speech Enhancement Us-
an optimal noise reduction algorithm that would maximize ing A Minimum Mean-Square Error Short-Time Spec-
noise reduction while minimizing speech distortion. In this tral Amplitude Estimator,”|EEE Trans. Acoustics,
paper, the characteristics gforder STSA MMSE is intro- Speech, Signal Processingol. ASSP-32, No. 6, pp.
duced, and we propose an adapti«erder STSA-MMSE 1109-1121, Dec. 1984.

speech enhancement method based on the characteristics o[
g-order MMSE to achieve very effective speech enhance-
ment. We compare the new adaptj$erder method with
other speech enhancement estimators through computer sim- . .
ulations to show the effectiveness of the proposed adaptive Signal Processingvol. ASSP-33, No. 2, pp. 443-445,
B-order MMSE method. It has been verified through a large Apr.1985.

amount of computer simulations that the proposed adaptive [5] J.S. Lim, “Evaluation Of A Correlation Subtraction

] Y. Ephraim and D. Malah, “Speech Enhancement
Using A Minimum Mean-Square Error Log-Spectral
Amplitude Estimator,IEEE Trans. Acoustics, Speech,

#-order method outperforms many conventional methods Method Enhancing Speech Degraded By Additive
and has potential for minimizing both speech distortion and White Noise,”IEEE Trans. Acoustics, Speech, Signal
residual noise, especially for the case of weak spectral com- Processing Vol. ASSP-26, No. 5, pp. 471-472, Oct.
ponents of speech signal corrupted by noise. 1978.
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