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ABSTRACT

We present two minimum mean square error (MM SE) frequency
domain estimators of the squared magnitude of a clean speech sig-
nal that is degraded by additive noise. These estimators are de-
rived under the assumption that the DFT (discrete Fourier trans-
form) coefficients of the clean speech are best modelled by the
Gamma probability distribution function (pdf) instead of the com-
mon Gaussian pdf. The statistics of the perturbing noise is the
Gaussian pdf in one case and the Laplacian pdf in the other. The
estimators are used as noise reduction filters in the experimental
evaluation. We give a comparison with a previously derived esti-
mator which uses the Gaussian pdf as the pdf for speech and noise
coefficients.

1. INTRODUCTION

Speech enhancement algorithms have found many applications in
mobile communications and human-machine interfaces. Although
numerous algorithms are available and significant improvements
have been obtained there is no single algorithm which suits all
kinds of applications. Even for asingle application such as low bit
rate speech coding Accardi and Cox [1] proposed to use more than
one estimator in order to deliver optimally preprocessed signals to
the various parts of the speech coder. In this context they devel-
oped the notion of “core estimators’. They used a MMSE-LSA
estimator [4] as a core estimator to enhance the prediction residual
and an estimator for the magnitude-squared DFT coefficients to
enhance the autocorrelation coefficients which are in turn used to
compute the LSF coefficients. In this paper we focus on the esti-
mation of the magnitude-squared DFT coefficients, however with
asignificantly improved statistical model.

It was observed in [8] and [10] that DFT coefficients of speech
signals derived from speech frames having a length of about the
span of correlation within the signal are not normally distributed.
The Gamma pdf isfound to be amore appropriate statistical model
for the real and imaginary part of the complex DFT coefficients of
clean speech. As the analytic and in general non-linear MM SE
estimation requires that the pdf of the signal and the disturbing
noise is known, the observation in [8] suggests to newly derive
estimators based on supergaussian priors. In this contribution we
present the Squared Spectral Magnitude (SSM) estimator of clean
speech DFT coefficients based on the Gamma pdf. As statistical
models of the noise we choose the common Gaussian pdf and the
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Laplacian pdf. The SSM estimator can be used e.g. in the LPC
analysisasin [1].

The structure of this paper is as follows: In the next section
we present the MM SE estimation in a general form and define the
pdf’s that yield our two new estimators. In section 3 we discuss
the estimators. Finally we summarize experimental results.

2. MMSE ESTIMATION IN THE DFT DOMAIN

Our goal is to recover information about a clean speech signa s
that is degraded by an additive noise n. The disturbed time signal
y is digitized at a sampling rate f; = 8000 Hz yielding y(k) =
s(k) + n(k) attimest = k/fs, k € Z. s(k) and n(k) shall be
statistically independent signals both having zero mean.

We obtain frequency domain coefficientsviaaframewise DFT
transform of length M , e.g. M = 256. A frame A of M consecu-
tivesamplesstartsat k = A- D, with frame shift D = M/2 = 128
and frame index A € Z. Two frames A and A + 1 overlap by
M — D = 128 samples (50 per cent overlap). A Hann window
hhann 1S USEd in the transform. We get the DFT transform of a
frame \ by

Y(,A) = S(p,A) +N(p, A)
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where i € {0,..., M — 1} istheindex for the normalized center
frequency Q, = 27 p/M.

2.1. MMSE Estimation

The information we wish to extract from the noisy signal Y (p1, A)
is the squared magnitude of the clean speech spectral coefficient,
i.e. |S(u, \)|?>. The MMSE estimation of |S(u, A)|” is obtained
by the conditional expectation E { |S(p, N)|*| Y (1, A) }. We may
omit the indices for the frame A and the frequency bin p in the se-
quel, because any estimation isdone independently for one specific
A and one specific . We assume the real and imaginary parts of
aDFT coefficient to be independent, identically distributed (i.i.d.).
Thus the estimation can be split into an estimator for the real part
Sk = Real {S} and theimaginary part S; = Imag {S}. The esti-
mator then becomes

E{ISP|Y} = B{S% |} +E{S"|%}. (@
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For an analytic evaluation of this expression we need to describe
the statistical behavior of the DFT coefficients. Asis illustrated
in [8] the Gamma pdf approximates the histogram of the clean
speech coefficients Sz and S; more precisely for the short time
DFT (M reasonably small) than the Gaussian distribution. Simi-
larly noise originating from a predominant source does not have to
be normally distributed. We found that the Laplacian pdf isagood
dternative for car noise (e.g. noisein the interior of acar driving
at 90 km per hour which we used in our evaluation).

We derive two analytic solutions of (1). One for Gaussian
distributed noise coefficients and one for noise coefficients having
aLaplacian pdf. In both cases the Gamma distribution is used as
the pdf of Sk and S;. The corresponding densities are given in (2)
— (4) for thereal part of the DFT coefficients. Nz and Sk denote
the real part of the noise and the speech, respectively.

2.1.1. Gaussian pdf, i.e. Normal distribution

1 Ng
p(Ne) = 7o exp <_ P ) @
2.1.2. Laplacian noise model
1 Ny
p(Ne) = = exp (—2'0—*") )

2.1.3. Gamma speech model

_ % ) < _@@
b0 = ggy =l e (<) @

Thesignal power isevenly split between the real and theimaginary
part, i.e. the variance of thereal and imaginary partsof NV and S is
a2 /2 for noiseand o2 /2 for speech. Asthereal and imaginary part
of thesignals areidentically distributed, the pdf’s of the imaginary
parts are given by substituting Sz by S; and Ny by N .

2.2. Experimental Data

We use the Kullback divergence [6] to measure the ability of the
Gamma pdf to better describe the histogram of speech DFT coeffi-
cients compared to the Gaussian pdf. It is defined for two discrete
pdf’s ps(v) and py(v) with N binsas

(50 =3 (pe) — p(w)) log(“—(”))

ot (V)
with py(v) the histogram of Sk (obtained from clean speech sam-
ples) and p;s(v) thediscrete pdf derived from (2) and (4), respec-
tively. If we normalize the result by the Kullback divergence of the
Gaussian pdf (using ps(v) derived from (2)) we have

Ds (V) | J(Sh) /J(SZh)Gaussian
Gaussian 1.0
Gamma 0.514

Thus, the Kullback divergence for Gamma pdf is about half of the
Kullback divergence of the Gaussian pdf. Therefore, the Gamma
pdf delivers a better fit to the data than the Gaussian pdf. The
same result applies to the imaginary part .S . Similarly, one can
investigate if for a specific noise another pdf is more appropriate
than the Gaussian distribution (2). We found that for some noise

types, such aslow frequency car noise, also the Laplacian pdf may
present a good fit to the data.

In the analytical derivation of the optimal estimators we had
to assume that the real part and the imaginary part of DFT coeffi-
cients are statistically independent. For a complex supergaussian
distributed variable thisimplies a dependence between the magni-
tude and phase. It can be shown [9], however, that this dependence
isvery weak and that with the above assumption improved estima-
torsresult.

3. MAGNITUDE-SQUARED ESTIMATORS

Choosing different density functions as a statistical model for the
spectral coefficients of the clean speech and the noise signal, we
derive the corresponding estimators (1) for the squared magnitude
|S|? of the clean speech DFT coefficients.

3.1. Gaussian Noise and Gaussian Speech M odel

In[1] Accardi and Cox presented the estimator of the power spec-
tral density E {|S|?| Y} of the speech signal for normally dis-
tributed spectral coefficients:

£ 3 ’
E{|S|2|Y}:mag+<m Y|> . (5)

Wehave¢ = 07 /07 theapriori SNR, with 0.2 the expected power
of the speech and o;? the expected power of the noise signal. In (5)
the following relation, also mentioned in [2], is evident:

E{|SP|Y}=Var {|9]|Y}+ |E{S|Y}]". (6

3.2. Gaussian Noise and Gamma Speech M odel

In this section we assume that the real part and the imaginary part
of the clean speech spectral coefficients can be modeled by the
Gamma density function (4). The DFT coefficients of the noise
signal follow a Gaussian pdf (2).

We define the auxiliary variables

_ V3 Y
Gi—2\/§\/g:i:0".

The estimator for the squared real part of S asneeded in (1) is

()

(356 + w(E L)

42

U(5,5:G1) + ¥(5,5:G7)

) 3 .

for G- > 0 and
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Fig. 1. The Gaussian/Gamma SSM estimate (8) and (9) of the
squared real part Sz of the clean speech DFT coefficients (solid
line). The estimator output is plotted for values of the a priori
SNR &4 = 15dB,0dB,—7dB. For comparison, the Gaus-
sian/Gaussian solution (5) for the same SNR values is given
(dashed line). We have ¢4 = 101og(0? /o) and o + o2 = 2.

for G- < 0, whereby I'(z) isthe Gammafunction [5, (8.310.1)],
®(a,v;x) = 1F1 (a;; z) denotes the confluent hypergeometric
function [5, (9.210.1)] and thefunction ¥(«, v; x) isdefined asin
[5, (9.210.2)].

The auxiliary variables G1 and hence the optimal estimator
use the magnitude |Yz| only, because estimating the squared real
part results in an even function of Y;. As we assume identically
distributed DFT coefficients for the real and imaginary part of a
spectral value, the estimator for the squared imaginary part is ob-
tained by substituting Yz with Y7 in (7) to (9). Equation (1) then
gives the estimator for the squared spectral magnitude.

Figure 1 compares the estimator derived in this section (solid
line) with (5) (dashed line). The plot shows the estimated squared
real part of the clean speech DFT coefficient E { SR2|YR} for a
priori SNRvalues ;5 = 10log(¢) = 15dB,0dB, —7dB and a
total signal power of o2 + 0> = 2 of the disturbed signal Y =
S+ N. Taking ;2 /o, asthe abscissa, (5) resultsin astraight line.

As the estimators are optimized for a function of the magni-
tude, i.e. the squared magnitude, they have an offset for ;2 /o> =
0. The estimators derived by Ephraim und Malah ([3],[4]) show
the same behavior. This offset (non-zero estimate for very small
input amplitudes) contributes to the high quality of the residual
noise signal asit helpsto mask residua noise fluctuations.

For low values of the SNR the estimator using Gamma speech
priors and the Gaussian noise model emphasizes coefficients of the
noisy signal that are significantly larger than the standard deviation
of the noise. This corresponds to the observation made in [8] for
the spectral estimators of the complex DFT coefficients.

3.3. Laplacian Noise and Gamma Speech Model

We now change the assumption to that the statistics of the noise is
best represented by a Laplacian pdf. We keep the Gamma pdf for
the speech coefficients.
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Fig. 2. The Laplace/Gamma SSM estimate (10) of the squared
real part S2 of the clean speech DFT coefficients (solid ling). The
estimator output is plotted for values of the a priori SNR &;5 =
15dB, 0dB, —7dB. For comparison, the Gaussian/Gaussian so-
Iution (5) for the same SNR values is given (dashed line). We have
Eap = 10|Og(052/an2) and o2 + o2 = 2.

Again we define auxiliary variables

Gi—ﬁiﬂ:z
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The MM SE estimator of the squared real part of the clean speech
DFT coefficient thenis

with
Den = /7 +exp (G- ) w (4, 5:04 1)

Vel )72 g1 3 |Yeel
—|—2(G+T) <I>(§,§;—G_ )

Again, we exploit the even symmetry of the result using the mag-
nitude |Yz|. Figure 2 shows the comparison between this estimator
(solid line) and (5). The use of the Laplacian noise prior yields a
graph with negative curvature for very low a priori SNR values
(see graph for £, = —7 dB). Again this shows the relationship
to the corresponding estimator in [8] asindicated by (6). Asthees-
timate is almost constant for low a priori SNR values, no musical
tones are generated.

4. EXPERIMENTAL RESULTS

In the evaluation we use the estimators (5), (8)/(9), and (10) as
noise reduction filters. The clean speech samples encompass six
different speakers each speaking twelve sentences. The sampling
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noi sefspeech Gaussian noise: SNRq,
pdf 0dB | 10dB | 20dB
Gaussian/Gaussian | 3.20dB | 11.89dB | 20.68 dB
Gaussian/Gamma | 4.46dB | 13.08dB | 21.71dB
Laplace/Gamma 4.01dB | 12.84dB | 21.59dB
(a) Gaussian noise
noise/speech car noise: SNR,ey
pdf 0dB | 10dB | 20dB
Gaussian/Gaussian | 3.01dB | 11.75dB | 20.52dB
Gaussian/Gamma | 4.12dB | 12.79dB | 21.28 dB
Laplace/Gamma | 3.80dB | 12.60dB | 21.24dB
(b) Car noise

Table 1. In the experimental evaluation the SSM estimators were
used as hoise reduction filters. The results are given as segmental
SNR after filtering. Two different noises, white Gaussian noise (a)
and car noise (b), were applied to clean speech samples at three
different levels (SNRsey = 0dB, 10 dB, and 20 dB before filter-
ing).

frequency was 8 kHz. Filtering is done for two different noises: a
stationary Gaussian noise of known variance ¢ (Gaussian noise)
and a recording made in the interior of a driving car (car noise)
as described above. The degree of perturbation is measured as
segmental SNR (denoted by SNR..,) before and after filtering.
Speech pauses are not considered. The segmental SNR is a quan-
tity to measure noise reduction and signal distortion at the same
time. SNR;., compares two signals in the time domain consid-
ering only speech active sections. The estimated speech signal is
constructed on an overlap-add basis, whereby each frame \ is cal-
culated asfollows:

3(k) = IDFT {\/E{ 10, A) 12 Y (11, A) } - ej-wymm}

M

with k,u € {0,...,M — 1}, IDFT {-},, theinverse DFT of
length M , and ¢, the complex angle of Y. We generated atime
domain speech signa in order to be also able to listen to the re-
sult and to compare the achieved SNR to other estimators. Note
that for computing autocorrelation taps we would not draw the
square root and would not overlap the time domain frames. The
results of the filtering are presented in Table 1. Both Gaussian
and car noise were applied at three different degrees: SNRyey =
0dB, 10 dB, 20 dB beforefiltering. For the enhancement process-
ing the a priori SNR was estimated using the “decision directed”
approach of [3]. In the case of car noise we employed the “Mini-
mum Statistics’ method [7] to estimate the noise power 2.

The previously known SSM estimator (5) using Gaussian pdf’s
to model both speech and noise coefficients is called Gaussian/
Gaussian in this table. We introduce the names Gaussian/Gamma
for (8)/(9) and Laplace/Gamma for (10) accordingly. The use of
the more precise statistical models leads to a consistent improve-
ment in terms of the segmental SNR. Modelling the car noise with
the Laplace pdf (Laplace/Gamma estimator) does not yield an es-
timator superior to the Gaussian/Gamma estimator. On the other
hand the results for car noise disturbance are relatively close com-
pared to the Gaussian noise case. Moreover, the strong positive

curvature of the Gaussian/Gamma estimator for large |Yz|? /o2
(see Figure 1) results in a tendency to produce musical tones —
a phenomenon unusual for SSM estimators, because the offset es-
timate for low input amplitudes mitigates the musical tones phe-
nomenon.

5. CONCLUSIONS

MMSE speech enhancement for mobile communications in the
frequency domain is based on relatively short framelengths for the
DFT transform (M in the range of 64 to 512). In this case, the
complex DFT coefficients of speech signals are not Gaussian dis-
tributed. They can be approximated more precisely by the Gamma
pdf. Similarly, a specific noise like the car noise used in the eval-
uation might be better modeled with a Laplacian pdf. The results
for the two new estimators confirm that more accurate statistical
models deliver consistently better results. On the other hand, the
musical tones arising from the Gaussian/Gamma estimator show
that optimizing in the MM SE sense does not necessarily go along
with an improved auditory impression. However, in an application
where the SSM estimator might serve asa“core estimator” for au-
tocorrel ation coefficients or for other features of the speech signal,
musical noise is not necessarily of primary concern. Moreover,
the musical noise is completely avoided when the Laplacian noise
model is used.
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