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ABSTRACT

We present an algorithm for reverberant speech enhancement
using one microphone. We first propose a novel pitch-based
reverberation measure for estimating reverberation time (RT60)
based on the distribution of relative time lags. This measure of
pitch strength correlates with reverberation and decreases
systematically as detrimental effects of reverberation on
harmonic structure increase. Then a reverberant speech
enhancement method is developed to estimate and subtract later
echo components. The results show that our approach
appreciably reduces reverberation effects.

1. INTRODUCTION

Two causes of degradation in speech exist in practically all
listening situations: background noise and room reverberation.
Many techniques such as spectral subtraction, adaptive noise
cancellation, and comb filtering have been developed to improve
the perceived quality of speech degraded by background noise,
and are effective in low to moderate noise level [7].
Alternatively, computational auditory scene analysis systems
treat background noise as distinct sound sources and segregate
acoustic waveforms into different streams representing different
sources, therefore are capable of segregating speech from noise
interference and speech utterances from each other (for example,
see [10]).

Most algorithms developed to enhance reverberant speech
utilize more than one microphone. Microphone array based
methods [5] attempt to suppress the sound energy coming from
directions other than the direct source and therefore enhance
target speech. Other methods, such as the system developed by
Gillespie et al. [6], employ prior knowledge of speech signal
distribution to estimate an inverse filter of the room impulse
response. These approaches require the source (loudspeaker) and
the microphones to be static. Brandstein [3] simulates the effect
of moving a source within a few centimeters range and
concludes that effective systems applying inverse filters have to
update the filters on a frame-by-frame basis.

Reverberant speech enhancement using one microphone has
also been studied. A cesptrum-based method is employed by
Bees et al. [2] to estimate reverberation impulse response, and
then its inverse is used to dereverberate the signal.
Yegnanarayana and Murthy [12] develop a reverberant speech
enhancement system by manipulating LP residual signals based
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on the residual characteristics of clean speech. Single
microphone approaches, however, only achieve moderate
success on dereverberation.

In this paper, we propose a robust algorithm for reverberant
speech enhancement using one microphone. A pitch-based
measure is employed for estimating the reverberation time, and a
method based on estimating and subtracting later echo
components is developed for enhancement of reverberant
speech.

2. MODEL DESCRIPTION

The proposed model consists of two stages. In the first
stage, described in Section 2.1, a pitch-based reverberation
measure is developed for estimating the reverberation time.
Then, in the second stage of the model, described in Section 2.2,
we develop a method of reverberant speech enhancement using
the reverberation time estimated in the first stage.

Many tasks require a robust measure on degraded speech
indicating the degree of reverberation. For example,
Yegnanarayana and Murthy [12] employ the kurtosis of LP
residual signal as a measure to estimate signal-to-reverberation
component ratio in a time frame. Extending this idea, Gillespie
et al. [6] utilize the kurtosis as an optimization criterion to derive
an inverse filter and therefore to dereverberate the degraded
signal.

Reverberation corrupts harmonic structure in voiced speech,
and we find that the degree of corruption can be used as a
measure of reverberation. Brandstein [4] employs a criterion of
signal periodicity for time-delay estimation using microphone
arrays. The criterion, indicating the degree of speech signal
influenced by the detrimental effect of noise and reverberation,
is used to weight generalized cross-correlations across all time
frames. As a result, the weights of time frames with less
degradation are increased relatively and the robustness of the
system is improved. However, this criterion measures the
influence from both noise and reverberation. Our goal is to
develop a pitch-based measure on the degree of reverberation. It
is robust to noise and can be used for estimating key parameters
of room impulse response such as the reverberation time (RT60).

Reverberation corrupts the speech by blurring its temporal
structure. However, due to the spectral continuity of speech, the
early echoes in the reverberation mainly increase the intensity of
the reverberant speech, whereas the later ones are deleterious to
speech quality and intelligibility [8]. Estimating the effects of
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Fig. 1. Histograms and estimated distributions of relative time lags in channel 22 (center
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0.3 s. The bar graphs represent histograms and the solid lines represent the estimated

distributions.

later echoes and subtracting them from the reverberant speech
should enhance the speech quality.

2.1. A pitch-based reverberation measure

Speech contains three types of time frames: voiced, unvoiced,
and silence. A pitch-based measure of reverberation should be
based only on voiced time frames. Moreover, in a noisy
background, some frequency channels in a voiced frame may be
severely corrupted by noise. This measure should be based on
the signals from “clean” frequency channels.

In order to satisfy these criteria, our measure, to be detailed
below, is extended from a recent multi-pitch tracking algorithm
[11]. This algorithm can track pitch periods reliably and can be
used to provide voiced/unvoiced labeling. Also, it gives a
channel selection method for identifying weakly corrupted
frequency channels from which the pitch-based measure is
extracted.

The pitch-tracking algorithm consists of four stages. In the
first stage, the input signals are sampled at 16 kHz and then
filtered into 128 frequency channels by fourth-order gammatone
filters [9]. Channels with center frequencies lower than 800 Hz
(channels 1-55) are categorized as low-frequency ones, others
(channels 56-128) as high-frequency ones. Envelopes are
extracted in high-frequency channels. At the end of the first
stage, normalized correlograms are computed using a window
size of 16 ms in all channels. Channel and peak selection forms
the second stage. Based on the shapes of normalization
correlograms, only channels weakly corrupted by noise are
selected and passed to later processing. The third stage integrates
periodicity information across all channels and the final stage
forms continuous pitch tracks using a hidden Markov model. A
revised version of the algorithm restricted to only one pitch track
is used for the present study, which deals with single speech
sources.

We observe that the differences between the pitch periods
determined by the pitch tracker and the time lag from the closest
peaks of normalized correlograms in selected channels indicate
the level of degradation in the harmonic structure. More
specifically, relative time lag A is defined as the distance from
the detected pitch period to the closest peak in correlograms. We
then collect the A statistics from the selected channels across all
voiced frames from 16 clean speech utterances chosen from the
TIMIT database for every channel separately. As a typical
example, the A histogram for channel 22 is shown in Fig. 1(a).
As can be seen, the distribution is sharply centered at zero.

We propose to use the spread of the distribution as an
indication of reverberation because it measures the “cleanness”
of harmonic structure in speech signals. A signal composed of an
ideal stationary harmonic structure is very clean. In this case, the
relative time lags collected from the signal have the same value
of zero, and the distribution has zero spread. Due to the
nonstationary nature of speech, the distribution spread of clean
speech shown in Fig. 1(a) is greater than zero.

Room reverberation corrupts harmonic structure, and
echoes from natural speech tend to spread the distribution of
relative time lags. To illustrate this, we collect the statistics of
relative time lags from reverberant speech generated by
convolving clean speech with a room impulse response function
of 0.3 sec reverberation time. The histogram is shown in Fig.
1(b). The spread is wider than that of clean speech.

In order to measure the distribution spread, we employ a
mixture of a Laplacian and a uniform distribution for modeling
the distribution in channel ¢ (see [11]):

1 A
p.(A) = (l—q)z—lﬁexp —|/1—| +qU(Am,), M

A

where 0 < g <1 is a partition coefficient of the mixture and A,
is the Laplacian distribution parameter. U(A;7n,) is a uniform
distribution with range 77, . In a low-frequency channel, we set
the length of the range as the wavelength of the center frequency.

We also assume a linear relationship between the frequency
channel index ¢ and the Laplacian distribution parameter A_,

A =a,+ac. 2)

The maximum likelihood method is utilized to estimate the
three parameters a,, a,, and g in low-frequency channels. The

estimated distributions of relative time lags in clean and
reverberant speech are also shown in Fig. 1(a) and 1(b). As can
be seen, the model distributions fit the histograms very well.
Finally, the measure of distribution spread A is defined as
the average of parameters A_ in low-frequency channels, for

harmonic structure of clean speech in low-frequency channels is
more stable than that in high-frequency ones. Fig. 2 shows the
relationship of A and reverberation time. Here, the reverberant
signals are generated by convolving the same 16 clean speech
signals with room impulse response functions of various
reverberation times obtained from the image model [1]. As can
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Fig. 3. (a) Magnitudes of reverberation inter-frame influence from
an original signal at frequency bin 62 and a time frame i to time
frame i+17, and (b) average pattern of the magnitudes of inter-
frame influence.

be seen, the plot is monotonic and therefore the relative time lag
spread A can be used to estimate the reverberation time.

2.2. Enhancement of reverberant speech

The reverberant signal received at a microphone, y(t), can be
modeled as:

y(O)=h(e)= (). 3)

where x(t) is the original speech signal and h(t) an FIR room
impulse response.

Then, short-term Fourier analysis is applied to the signals
using non-overlapping rectangular window of length N .
Because of the linearity of Equation 3 and the causality of
impulse responses, the short-term spectrum of the reverberant
signal is derived as:

D N-1
S ki)=Y Y 1kk:)S, (ki —a). o
d=0 k=0

where S, (k;i ) is the short-term speech spectrum of the original

signal, and indexes k and i refer to frequency bins and time
frames, respectively.
Reverberation inter-frame influence / (k,k‘,;d ) represents

the influence from time-frequency bin (k;i -d ) of the original
signal to bin (k‘,;i) of the reverberant signal, and it can be
computed from the room impulse response h(t) directly. The
time-frequency bin (k‘,;i),) of the reverberant signal is only
affected by bins of the original signal that are in time frames
between time frame i, and i, — D, where D is determined by
the length of room impulse response.

The reverberation inter-frame influence 1 (k,k),;d) has two

components: magnitude and phase. The effects of moving the
source with the centimeter range away are simulated also using
the image model [1]. We find that the phases of inter-frame
influence are highly susceptible to source positions, while the
magnitudes vary only moderately. Therefore, it is impractical to

Attenuation (dB)

0 50 50 200

Tim1eOPms) !

Fig. 4. Peak magnitude attenuation with respect to time delay.

use the phases of inter-frame influence since they are unstable in
real environments. Here we employ only magnitude in this
study.

In implementation, our speech enhancement system uses
hamming windows of length 16 ms with 8 ms overlap for short-
term Fourier analysis. Magnitudes of inter-frame influence are
computed by simulating reverberation effects of sinusoids of unit
energy in a time frame on a later time frame. As an example,
Fig. 3(a) shows the magnitudes of reverberation inter-frame
influence from an original signal at frequency bin 62 and time

frame i to time frame i+17 (136 ms later), i.e., |I(62,ky ;17].

As shown in the figure, the magnitudes of inter-frame influence
have one prominent peak occupying the same frequency bin of
the original signal, i.e., frequency bin 62 in this example. Also,
the magnitudes decrease rapidly away from this frequency bin.
This pattern is true of all scenarios. An average pattern is
obtained by averaging all patterns obtained from various room
impulse response functions and time frame shifts. The average
pattern is shown in Fig. 3(b), and it smoothes out the variations
typically shown in Fig. 3(a).

The second aspect of the magnitude curve is that the peak
magnitudes are more attenuated as frame shifts increase due to
the decaying pattern of room impulse response function. An
example of peak magnitude attenuation is shown in Fig. 4. The
solid line represents the attenuation in frequency bin 62 with
different frame shifts. The decaying pattern of room impulse
response can be approximated by an exponential decay function,
specified by reverberation time [8]. The theoretical attenuation
curve based on the reverberation time is shown as the dash line
in Fig. 4. Although some variations exist, the theoretical
attenuation curve approximates the real attenuation curve.

Knowing the reverberation time, the magnitude of the inter-
frame influence can be estimated from the theoretical attenuation
curve. More specifically, we obtain:

1.k, d) = A@)P, - k) )

where A(d ) is the theoretical attenuation curve shown as the
dash line in Fig. 4 and P(ko) is the average pattern shown in
Fig. 3(b).

The distinction of early and later echoes for speech is
defined as a delay of 50 ms in the room impulse response
function [8]. This translates to approximately 7 time frame shifts
for an inter-frame distance of 8 ms. We estimate the effects of
later echo components using Equation 4. Since the phases are
unknown, a frame-by-frame iterative spectral subtraction based
method is employed for speech enhancement. We derive:

| - 846




55 &,:i) = \/u|:|S k) —agfp(k,ky ;d]2|S)_(k;i—d12}

7 k=0

6)
where S (k;i) is the short-term spectrum of enhanced speech,

and u(x)zx if x=0, and u(x)=0 otherwise. Parameter

a =0.08 is associated with spectral subtraction method. The
short-term phase spectrum of enhanced speech is set to that of
reverberant speech. Finally, the processed signal is reconstructed
from S;(k;i).

3. RESULTS AND DISCUSSIONS

Our algorithm has been evaluated with different utterances and
reverberations. To illustrate typical performance, we show the
enhancement result of a speech signal corresponding to the
sentence “She had your dark suit in greasy wash water all year”
from the TIMIT database in Fig. 6. Fig. 6(a) and (b) show the
clean signal and its spectrogram, respectively. The reverberant
signal is produced by convolving the clean signal and a room
impulse response function with a 0.3 s reverberation time. Fig.
6(c) and (d) show the reverberant signal and its spectrogram,
respectively. Finally, the processed speech and its spectrogram
are shown in Fig. 6(e) and (f). The figure, as well as a listening
test, shows that the effects of reverberation are appreciably
reduced. For example, the tail blurs in reverberant speech filling
the silence gaps between energy bursts in clean speech are
significantly suppressed. In some cases, they are entirely
removed. From visual inspection, our results are comparable to
those of Yegnanarayana and Murthy [12]. We have also tested
our system on reverberant signals corrupted by white noise.
Similar improvements are obtained.

Our pitch-based reverberation measure exploits a well-
established notion — pitch — in psychoacoustics, and can
potentially be applied to reverberant signals of multiple speech
sources. Moreover, the measure may be employed as a criterion
for optimization-based dereverberation methods. This paper
represents a first step and further performance improvements are
expected in future research.
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