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ABSTRACT

A speech enhancement scheme is presented integrating spatial and
temporal signal processing methods for blind denoising in non sta-
tionary noise environments. In a first stage, spatially localized
point sources are separated from noisy speech signals recorded
by two microphones using a Blind Source Separation (BSS) algo-
rithm assuming no a priori knowledge about the sources involved.
Spatially distributed background noise is removed in a second pro-
cessing step. Here, the BSS output channel containing the de-
sired speaker is filtered with a time-varying Wiener filter. Noise
power estimates for the filter coefficients are computed from de-
sired speaker absent time-intervals identified by comparing only
signal energy of separated source signals from the BSS stage. The
scheme’s performance is illustrated by speech recognition experi-
ments on real recordings corrupted by babble noise and compared
to conventional beamforming and single channel denoising tech-
niques.

1. INTRODUCTION

Speech enhancement in real environments remains a challenging
task. Single-microphone enhancement algorithms based on tem-
poral information about the recorded signals are most frequently
encountered. They often use a probabilistic framework with sta-
tistical models of a single speech signal corrupted by stationary
Gaussian noise [1]. While reasonable performance is obtained
when the noise is stationary, it deteriorates rapidly when noise
power varies importantly or speech mixtures contain significant
reverberation. Single channel denoising algorithms based on min-
imum statistics [2] and Voice Activity Detection (VAD) [3] have
been developed to explicitly address non stationary noise. Spatial
information about signal mixtures can be exploited by using mul-
tiple microphones. In beamforming [4] for example, an array of
microphones with a known geometry is used to suppress interfer-
ing signals. Here, source localization can be performed as well and
reverberation be handled with adaptive algorithms [4]. However,
these methods usually rely on a priori information about the acous-
tical environment and sources involved. Also, large microphone
arrays are required for good performance whose implementation
is difficult and costly.

The number of microphones can be drastically reduced by us-
ing blind source separation (BSS) algorithms [5, 6]. The latter
exploit spatial information about signal mixtures recorded at dif-
ferent microphone locations to explicitly separate interfering noise
signals from the desired source signal without assuming any a pri-
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ori source models. In the following a combined spatial/temporal
speech enhancement approach based on BSS is developed.

2. SPEECH ENHANCEMENT SCHEME

We consider an analytical framework with m different microphone
mixture signals z(¢) composed of m point source signals s(¢) and
additive background noise n(t)

x(t) = ZA(T) s(t—7) + n(t)

where P is the convglu(t)ion order, A(7) is a m x m mixing
matrix. A key distinction is made between spatially point sources
s(t) and distributed background noise n(t). Assuming little re-
verberation, signals originating from point sources can be viewed
as identical when recorded at different microphone locations ex-
cept for an amplitude factor and a delay. The unmixing strategy
would consist in finding these latter parameters for each source and
summing up the realigned and scaled mixture signals. However
background noise originates from a large number of spatially dis-
tributed sources resulting in no defined delay and amplitude differ-
ence between signals recorded at each microphone. Thus a back-
ground noise unmixing strategy poses a singular problem. These
different spatial signal characteristics are addressed in subsequent
stages of the speech enhancement scheme illustrated in Figure 1.
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Fig. 1. Proposed Speech Enhancement Scheme

Spatial information about interfering point sources is processed
in the blind source separation unit while the remaining stage re-
moves distributed background noise by a mixed temporal/spatial
processing approach.
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3. BLIND SOURCE SEPARATION (BSS) OF
INTERFERING POINT SOURCES

In recent years a number of algorithms have emerged implement-
ing blind source separation of mixture signals by decorrelating
their higher-order statistics [6]. However the second order decorre-
lation approach presented in [5] yielded the most consistent perfor-
mance in our experiments. The Multiple Adaptive Decorrelation
(MAD) algorithm [5] is designed for separating m recorded mix-
tures x(t) = Zf:o A(7) s(t — 7) into m original sources s(t)
by finding a sequence of m x m unmixing filter matrices W (7)
such that 8(t) = Y9, W(r) x(t — 7), Q being the filter
length. The unmixing filter computation is executed in the fre-
quency domain where X(w,t) ~ A(w) S(w,t), X (w,t) being
the spectrogram obtained by consecutively computing the Short
Time Fourier Transform of length T (where T >> P, the con-
volution order), of z(¢) at each time instant ¢ in an overlap-shift
fashion [5]. If the cross correlation of the measurements is denoted
by Re(w,t) = E[X(w,t) X" (w,t)] and that of the sources by
As(w,t) = E[S(w,t) S” (w,t)], we get W (w) from
T

A7 A . A H 2
W, A = arg min ZZ:: IW R (w, )W — Ag(w,t)]I* (1)

st. W(t)=0,V7 > Q, Q << T,
W“(w) =1

The first constraint imposes that the filter length @@ be much
smaller than T to solve the frequency permutation problem [5].
Also scaling issues are solved by the second constraint fixing the
diagonal elements of the filter matrices to unity. The final learning

ruleis AW™ (w) ~ (WROE (w, ) WH —A, (w, t)) W(w) Re(w,t).

It is noted that the second constraint in problem (1) ensures that
the dominant speaker voice will be separated at the microphone
position at which its amplitude is highest during most of the sig-
nal length [7], thereby determining the desired speaker containing
output source. The approach has shown robust performance in a
number of applications e.g. car environments [7]. Figure 2 illus-
trates how a desired speaker signal (digit utterance in a noisy office
environment) is separated from an interferring point source by ap-
plying the BSS algorithm. However, both separated source files
still contain the original baseline background noise. In the follow-
ing, the background denoising stage (see Figure 1) is addressed.
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Fig. 2.
Sources: Input recorded noisy source mixtures (left) and output
separated noisy sources (right)
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4. BACKGROUND DENOISING

The key to efficient denoising lies in accurately tracking non sta-
tionary noise power.

4.1. Standard Denoising Techniques

Two fundamental methods have emerged for determining time-
varying noise power and are based on Voice Activity Detection
(VAD) [3] or minimum statistics [2]. VVAD approaches continu-
ously track the measured noisy signal power and perform weighted
noise power updates depending on the probability a speech interval
has been detected. The drawback of these methods is that extensive
a priori models are necessary to discriminate between speech/non-
speech intervals and robustness is not guaranteed in the presence
of speech containing disturbances like babble noise. Minimum
statistics based denoising algorithms seek to determine minimum
noise power in each spectral subband over a finite time horizon.
These noise power estimates are then used to compute the coef-
ficients of a time-varying Wiener filter [2]. If the receding time
horizons are chosen appropriately, robust and conservative denois-
ing performance is obtained.

4.2. Desired Speaker Activity Detection (SAD)

Denoising performance can be significantly improved if time-
intervals containing noisy desired speaker speech samples are dif-
ferentiated from noise-only intervals when estimating non station-
ary noise power. In the following we propose a new robust, model-
independent measure based on two channel information to detect
desired speaker containing time-intervals. If the energy of sepa-
rated BSS channel 5;(t) over a time frame 7' is given by
t+T

Er(3(t) = Y I8 dt,

a two-channel energy ratio factor A(¢) can be defined as
At) = (2)
—v * max [ET (52(t)) — EAET (22, 82) (t), e]

max I:ET(gl(t)) — Er (§2 (t)) —+ 5 AETr ($2, §2) (t), €:|

exp

and computed over the whole signal length in an overlap-add fash-
ion with shifting window of size T'. The basic motivation for A is
given first before discussing the remaining terms in (2).

In the case of mixtures corrupted by distributed background
noise only, the desired speaker will be isolated into BSS channel
1 and removed from BSS channel 2 which will solely contain dis-
tributed background noise. Hence, by neglecting the term in AE
(& = 0) (as well as the max operation) and considering v = 2, the
first-order Taylor expansion of \(¢) yields
Er (§2 (t))

Er (§1 (t)) ’

The corresponding expression in the frequency domain with
the noise variance in individual spectral subbands computed from
the variance of S»(w,t) and the noise plus speech variance from
S1(w,t) is equivalent to a Wiener filter coefficient. Similarly the
corresponding expression for (2) is analog to a generalized Wiener
filter gain function [1]. However, experiments have shown that re-
liable filters cannot be directly estimated from the ratio of spectral

At) = 1-—
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subband channel energies. In fact, although the distributed back-
ground noise energy integrated over all spectral bands in a given
time-interval of $- is similar to the overall background noise en-
ergy in the same time-interval in $1, this is not true when individual
spectral subbands are considered.

Instead the overall energy ratio (2) over a time frame 7" can be
used to detect desired speaker activity. Indeed, since it is assumed
that background noise energies are similar in each recorded mix-
ture when microphones are positioned close enough and the over-
all energy is preserved from recorded to separated sources because
of the scaling constraint in (1), the denominator in (2) is close to
zero and hence ) tends to zero when the desired speaker is absent.
If it is present, the energy in BSS channel 1 is much larger than
in channel 2, the quotient in (2) tends to zero and thus A to 1. In
practice, BSS channel 2 may contain an interferring point source
eliminated from channel 1. Therefore the AE term with

t+T

max| Y (22 = [32(8)]”) dt. ]

is introduced in (2) to robustify the detection of desired speaker
by explicitly tracking energy changes from recorded channel 2 to
it T llzal? dt
it llzal? dt
energy change in channel 2 to a corresponding energy change in
channel 1. The parameter v allows to adjust the ”sharpness” of
speech/non speech interval delimitation.

The resulting () is used to provide a probability measure for
the speaker’s presence. The noise estimate is given by

(W, T+1) = 24%xPp(w,T)+(1—24)* Xc(w,T)

AET (mg, §2)(t) =

separated BSS channel 2. Factor § = scales the

where z, is a smoothing constant and X.(w,T) is the auto-
correlation of (1 — A(t)) Si(w,t), ¢ in time frame T'. The current
speech plus noise power estimate is obtained from the recurrence

Popn(w, T+1) = zgxPoin(w,T)+(1—2y) % X(w,T)

where z,4 is a smoothing constant and X is the auto-correlation of
S (w,t), t intime frame 7. The noise and speech+noise power es-
timates are used to compute the Wiener filter coefficients g(w,T')
for each frame. Finally the denoised speech spectrum is obtained
from

Y(w,T) = gw,T)Si(w,T)

with filter coefficients

b, (w,T)

g(w7T) = 1- <I>S+n(w,T)'

It was observed that using A(¢) directly from (2) resulted in
too agressive denoising performance since the value of A(t) is
not necessarily one at each local maximum and may decrease too
rapidly near the edges of detected time-intervals, thereby cutting
off speech parts. Hence A(t) is refined by replacing it by a se-
quence of Hanning windows with centers determined by the local
maxima of A(¢) from (2) and widths given by twice the distance

between symmetric points around each maximum where A(t) reaches

a certain threshold 3. The resulting curve (see Figure 3) is smooth
and sufficiently wide to avoid cutting off edges of desired speaker
parts. The denoised speech signal is shown in Figure 5, case (f),
where it is compared to other denoising approaches. Quantitative
comparison to standard methods is presented in the next section.

o ws i ws =
Fig. 3. Separated BSS channel 1 with corresponding A (dashed
line) from (2) and A(¢) after refinement (full line); threshold 3
indicated by horizontal line (see text)

5. EXPERIMENTS

Recordings were taken in an 3m x 4m x 6m room with two
directional microphones separated by 10 cm mounted on a desk.
The desired speaker was sitting 30 cm from the microphone setup
(closer to left microphone) and uttering continuous digit sentences
while 4 loudspeakers positioned in each room corner were playing
an identical sound file containing a mixture of babble and white
noise to generate spatially distributed background noise. Also an
additional loudspeaker was put at 30 cm distance from the right
side microphone playing a prerecorded word sequence to create
an interferring point source. The speech recognizer as well as a
multiple noise condition database for training the HMM models
was provided by the AURORA 2 benchmark dataset. The feature
extraction front-end FE_v2_0 (AURORA 2) was used to compute
39 MFCCs (including energy, delta, delta-delta). The test database
consisted of files recorded at different SNR dB levels (from -5 to
10 dB). 100 digit sentences, each containing a maximum of

4 digits, were recorded for each SNR case.

The proposed scheme was compared to standard speech en-
hancement methods like delay-and-sum beamforming and mini-
mum statistics type denoising like Martin’s algorithm [2]. In the
spatial processing method of beamforming (BF), one mixture is
delayed and summed to the other based on the desired speaker’s
known location to emphasize the desired signal amplitude by in-
phase summation. Whereas better beamforming methods exist,
emphasis is put in this study on comparison of largely ”blind” en-
hancement techniques. Martin’s single channel type denoising al-
gorithm (DN) was preferred over model-based VAD techniques
for the same reason. In Table 1 and Figures 4 & 5, speech recog-
nition on recorded files (REC) is evaluated against the conven-
tional scheme (BF+DN), BSS, BSS followed by Martin’s algo-
rithm (BSS+DN), BSS+DN followed by Speaker Activity Detec-
tion (BSS+DN+SAD) and BSS followed by SAD (BSS+SAD).

First Figure 4 clearly indicates that speech recognition on the
unprocessed recorded files leads to unacceptable performance even
at high SNR. The conventional approach (BF+DN) yields unsatis-
factory results as the interferring point source was not removed
efficiently (see case (b) in Figure 5). Blind source separation alone
(curve BSS and case (c) in Figure 5) lifts the recognition rate by
at least 20 %. Finally curve BSS+SAD and case (f) in Figure 5
illustrates BSS followed by SAD yielding the best performance.
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Fig. 4. Word recognition accuracy for standard (BF+DN) and
proposed scheme (BSS+SAD) (REC=recorded, unprocessed case)

To compare the background denoising techniques, performance
of all strategies involving BSS is analyzed in Table 1. For high
SNR (5;10 dB), one obtains similar (< 1% difference in) per-
formance when processing signal $; with conventional denoising
(BSS+DN) or SAD schemes. Indeed the signal has been consid-
erably enhanced by removing the interferring point source and the
remaining background noise level is too low to cause significant
speech deterioration. However, at difficult SNR (-5;0 dB) lev-
els, highly non stationary background noise components cannot
be sufficiently eliminated with the minimum statistics approach
(see case (d) in Figure 5). On the contrary, the two channel infor-
mation based SAD approaches achieve the necessary denoising in
noise-only intervals (cases (e) and (f) in Figure 5) and outperform
conventional denoising (BSS+DN) considerably (~ 5-10 % accu-
racy increase). This shows the benefit of non stationary noise esti-
mates determined from two channel information over single chan-
nel, minimum noise power averaged over a long time interval. Fi-
nally, the superior performance of BSS+SAD over BSS+DN+SAD
in low SNR cases suggests that less agressive denoising in digit
containing time-intervals preserves more desired speech informa-
tion and/or induces less artifacts. The best reference accuracy
achieved was 90.84 % on 100 digit sentences recorded with the
same microphone setup in the silent office environment. This re-
flects the effects of room reverberation, speaker and recording equip-
ment different from the ones used in the AURORA 2 database.

SNR [dB] 5 0 5 10
REC 0 | 3410 | 60.96 | 61.71
BF+DN 24.75 | 41.48 | 66.25 | 71.28
BSS 49.34 | 67.68 | 84.89 | 84.63
BSS+DN 50.64 | 74.30 | 87.15 | 89.67
BSS+DN+SAD | 56.96 | 77.10 | 86.65 | 89.67
BSS+SAD | 60.37 | 79.13 | 86.54 | 89.92

Table 1. Word recognition accuracy (%) for various denoising
schemes (see text for discussion)
6. CONCLUSIONS

A spatio-temporal speech enhancement scheme has been presented
that enhances noisy speech signals in two subsequent processing

@ W @ HH—
®) © #H

Fig. 5. Comparison of different denoising strategies on a recorded
digit utterance example (transcript 0020): (a) REC, (b) BF+DN,
(c) BSS, (d) BSS+DN, (e) BSS+DN+SAD, (f) BSS+SAD

stages using only two microphones and no a priori models about
the speech and noise sources involved. First the desired speaker is
separated from interfering, spatially localized point sources using
a blind source separation algorithm. In a second step, spatially
distributed background noise is removed using energy informa-
tion from both separated BSS output channels to detect noise-only
intervals and compute a non stationary noise estimate to design
a time-varying Wiener filter. In speech recognition experiments
carried out in a noisy office environment, the scheme was shown
to yield significant enhancement over standard methods such as
beamforming and single channel Wiener filtering based on mini-
mum noise statistics. Denoising in the proposed scheme is inde-
pendent of the background noise spectral content since detection
of desired speaker speech activity is based on energy comparison
between two channels only. As no a priori knowledge is used
in the BSS stage either, the scheme is suitable for environment-
independent speech enhancement and recognition tasks.
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