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ABSTRACT

This paperintroducestwo short-timespectralamplitudeestima-
tors for speechenhancementith multiple microphones.Based
on joint Gaussianmodels of speechand noise Fourier coefi-
cients the clean speechamplitudesare estimatedwith respect
to the MMSE or the MAP criterion. The estimatorsoutperform
single microphoneminimum meansquareamplitude estimators
whenthe speechis highly correlatedandthe noiseis sufiiciently
uncorrelated. Whereasthe first MMSE estimatoralso requires
the desiredsignalsto be in phase,the secondMAP estimator
performsa direction-independentoisereduction. The estimators
are generalizationsof the well known single channel MMSE
estimatorderived by EphraimandMalah andthe MAP estimator
derived by Wolfe andGodsill respectiely.

1. INTRODUCTION

Speechcommunicationappliancessuch as voice-controlledde-
vices, hearingaids and hands-freetelephoneften suffer from
poorspeechyuality dueto backgrounchoiseandroomreverbera-
tion. Singlemicrophonespeectenhancemerdlgorithms.e.g.the
Minimum Mean SquareError (MMSE) estimatorof the speech
Discrete Fourier Transform (DFT) amplitudes[1], can achieve
high noisereductionat the expenseof moderatespeechistortion.
With multiple microphonesspatialinformation can be exploited,
e.g. by beamformingto reducenoiseand reverberationcausing
only very little speechdistortion. However, if the Direction Of
Arrival (DOA) cannot be estimatedwith sufiicient accurag, the
performancef thebeamformingsystemdegrades.

In this contritution we proposetwo estimatorsfor speechDFT
amplitudesthat exploit the benefits of multiple microphones.
Whereaghefirst estimatorequireghe desiredsignalcomponents
to be in phase the secondestimatorsdelivers DOA independent
noisereduction.

Figure 1 shavs an overvien of the multichannelnoisereduc-
tion systemwith the proposedspeechestimators. The time sig-
nalsy;(k) ,¢ € {1... M} from M microphonesare sgmented
andmultiplied by half overlappingHannwindows. The resulting
blocksaretransformedria FFT. Y;(\) denoteghe comple value
of signali in DFT bin A. For the sale of brevity the frequeny
index A is omitted.

Yi=Rie’” = A; /™ + N; ;i€ {l.M}. 1)
Y; consistof a speectcomponentS; = A;e’* andnoiseN;. A;
denoteghespectrabmplitudeof speectanda; thecorresponding
phase.

Thenoisevariances;?vi areestimatedseparatelyor eachchannel
andarefedinto aspeectestimatorIf M = 1, theminimummean
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Figurel: MultichannelNoiseReductionSystem

squareshorttime spectrabmplitude(MMSE-STSA)estimatof1],
its logarithmicextension[2], or lesscomplex MAP estimatorg3]
canbe appliedto calculatereal spectralweightsG; for eachfre-
queng. If M > 1, ajoint estimatorcanexploit informationfrom
all M channelsusing a joint statisticalmodel of the DFT coef-
ficients. After IFFT and Overlap Add M noisereducedsignals
are synthesized.The remainderof the paperis organizedasfol-
lows: Section2 introducegshe underlyingstatisticaimodelof mul-
tichannelFourier coeficients. In Section3 two nev multichannel
spectralamplitudeestimatorsarederived. First,a minimummean
squareestimatorthatevaluateghe expectationof the speectspec-
tral amplitudeconditionedon all noisy complex DFT coeficients
is described. Secondly a maximuma posteriori(MAP) estima-
tor, conditionedon the joint obsenration of all noisy amplitudess
proposed.Finally, in Section4, the performanceof the proposed
estimatorsn idealandrealervironmentss discussed.

2. STATISTICAL MODELS

Motivatedby the centrallimit theoremyealandimaginarypartof
the DFT coeficientsareusuallymodelledaszeromeanGaussian
[4].This leadsto the following statisticalmodelfor a DFT bin of
thes-th signal. (cf. [1],[5]):

Ai i = _ .1 2
whin) = 2 en () @
2R R} + A? 2A;R;
p(Ri|Ai) = Stexp {— 5 Io : @)
IN; ON; ON;
AL LJai |2
ON; X,

Hereagi describeghe varianceof the speechin channeli and I
denoteghe modified Besselfunction of the first kind and zeroth
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order To extendthis statisticalmodelfor multiple noisy signals,
we considerthe typical noisereductionscenarioof figure 2, e.qg.
insidearoomor acar A desiredsignals arrivesata microphone

Figure2: Speectandnoisesourcesrriving at microphonearray

array from angled. Multiple noise sourcesarrive from various
angles.Theresultingdiffusenoisefield canbecharacterizedy its
coherencdunction. The magnitudesquaredcoherencebetween
two omnidirectionaimicrophoneg andj of adiffusenoisefield is

givenby
125 (NI”  _ (27rfdij> .
@i (f) %45 (f) c
Therefore,above a critical frequeng dependingon the micro-
phonedistance the MSC becomesvery low and thus the noise
componentof the noisy spectracan be considereduncorrelated
with

MSCi;(f) =

2 . .
AR oN;, 5 =]
E{N;N;} = { 0 L iz (6)
Hence(3) and(4) canbeextendedo
M

i=1

M

[1e(ilAn,an)  (®
i=1

for eachn € {1...M}. Weassumehetime delayof thespeech
signalsbetweerthemicrophoneso besmallcomparedo theshort
time stationarity of speechand thus the speechspectralampli-
tudesA; to be highly correlated. However, dueto nearfield ef-
fectsand differentmicrophoneamplifications,we allow a devia-
tion of the speechamplitudesby a channeldependentactorc;,
i.e. Ai = ¢ - Aando}, = cjos.

In analogyto the single channelMMSE estimatorof the speech
spectralamplitudes the resultingjoint estimatorswill be formu-
latedin termsof a priori andaposterioriSNRs

p(Y1,...,Yu|An,an) =

2 2
gg. R;

§i = 21 y Yi = 27( ) (9)
ox, oy,

wherethe a priori SNRs¢; areestimateddy the decisiondirected
approacHh1].

3. M-D SPECTRAL AMPLITUDE ESTIMATORS

We derive Bayesianestimatorsof the speechspectralamplitudes
A,, n € {1...M} usinginformationfrom all M channels.
First, a straightforward multichannekextensionof thewell known

MMSE-STSA by Ephraimand Malah [1] is derived. Second,
a practically more useful MAP estimatorfor DOA independent
noisereductionis introduced. All estimatorsoutput M spectral

amplitudesand thus M enhancedsignals are delivered by the
noisereductionsystem.

3.1. Estimation conditioned on complex spectra

The single channelalgorithm derived by Ephraim and Malah
calculatesthe expectationof the speechspectralamplitude A
conditioned on the obsered complex Fourier coeficient Y5,
i.e. E{A,|Y.}. In the multichannelcase,we can condition
the expectationof eachof the speechspectralamplitudesA,, on
the joint obsenration of all M noisy spectraY;. To estimatethe
desiredspectralamplitudeof channel we have to calculate:

A, = E{A.V,...,Yu} (10)

oo 27

= //Anp(An,an|Y1,...,YM) day, dA,. (11)
00
This estimatorcanbe expressediia Bayes’Ruleandusing(8) as

[eS] 27 M
fAn fp(Anvan) H p(Y”JlAnvan) da, dA,
0 0 =1

A, =

(12)

00 27 M

f fp(Anaan) H p(YilAn;an)dan dA,
00

i=1
To solve (12) we assumeerfectDOA correction,.e. a; := « for
alli € {1...M}. InsertingA; = - A, in (8),(4) theintegral
over a in (12) becomes([6] eq. (3.339))

27 M c; 2
Y, — &L A,e”
/exp{— E l(cj+|}da:

s i=1 N;

MY 4 (2A,)?
exp{—z Tn I(] 2An

i=1 i

M CiY—i
Zi,"z ) (13)

i=1 ~ Ni

The remainingintegrals over A,, can be solved using ([6] eq.
(6.631.1)). After some straightforvard calculations,the gain
factorfor channeln is obtainedas

A, €n
Gn="" = I15): |——" .
I¥al \| 7 (1 + 30 &')
| —05;1; SM e (14)
1 T U.dy 1 + Ei\il 5’;

F; denoteghe confluenthypegeometricseriesandI” the Gamma
function. Theargumentof F; containsasumof apriori andapos-
teriori SNRswith respecto the noisy phasesd;, i € {1... M}.

F; hasonly to be evaluatedonce,sincethe agumentis indepen-
dentof n. Note,thatin caseof M = 1 (14)is thesinglechannel
MMSE estimatorderived by EphraimandMalah.

3.2. Estimation conditioned on spectral amplitudes

Theassumptiony; := « ,¢ € {1... M} introducesa DOA de-
pendenyg, sincethisis only givenfor speeciirom § = 0°. For a
DOA independenspeechlenhancemenwe conditionthe expecta-
tion of A,, onthejoint obseration of all noisyamplitudesR;, i.e.

A, = E{A,|R1,...,Ru}.

Whenthe time delay of the desiredsignal s in figure 2 between
the microphonesds small comparedo the shorttime stationarity
of speechthenoisyamplitudesk; areindependentf the DOA 6.

Unfortunately afterusing(3) and(7), we have to integrateover a
productof Bessefunctions which leadsto extremelycomplicated
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expressiongvenfor thesimplecaseM = 2.
Therefore,searchingfor a closedform estimatoy we investigate
a MAP solutionwhich hasbeencharacterizedvy [3] asa simple
but effective alternatie to the meansquareestimatorin the single
channebpplication.

We searchfor the speechspectralamplitudeﬁ.n that maximizes
the pdf of A,, conditionedon the joint obseration of R; ,7 €
{1...M}.

A, = arg n}laxp(An|R1, ...y Ru) (15)
= . 16
A T (R1, ..., Rur) (16)
Weneedio maximizeonly L = p(Ry, ..., Ru|An)-p(Ar), since
p(R1, ..., Ry ) isindependendf A,,. It is howevereasierto max-

imizelog(L), withouteffectingtheresult,becaus¢henaturallog-
arithmis a monotonicallyincreasingfunction. Using (7), (2) and

(3) we get
A L a—t 2R;
logL =1 -7 |- I d
og og (71'0’ ) aén + ; og (‘712\11-

7

Sn
R} + ()47 £ ALR;
et " og (I |22 .an
N, N,

A closedform solutioncanbefoundif the modified Besselfunc-
tion Ip is consideredasymptotically For large aguments,the
Bessefunctioncanbe approximatedy

1 =

Ip(z) =~ e”. (18)

2wx

Here, the term in the likelihood function containingthe Bessel
functionsimplifiesto:

o (pEARNY 28 AR 1 (| SAR
og 0 O'JZV‘L ~ 0_12\71 — 5 og WT .
19)

Differentiationof log L andmultiplicationwith theamplitudeA,,

resultsin A, 2% = 0
n

M c; \2 M c;
1 (25) SR 2-M
(R E )
N,

95, i=1 ~Ni i=1
(20)

This quadraticexpressiorcanhave two zerosfor M > 2 it isalso
possiblehatnozerois found. In this casetheapex of theparabolic
cunein (20)is usedasapproximationjdenticalto therealpartof
the complex solution. The resultinggain factor of channeln is

i

givenas
[&n M
G, = NI 0 -Re{ ’y¢£¢+
2+2 Ef\il & i=1

(Z \/vz-si) +(2-M) <1 + Z@) (21)

i=1

For the calculationof the gain factors,no exotic function needs
to be evaluatedary more. Also, Re{-} hasonly to be calculated
once,sincethe agumentis independendf n. Again,if M = 1,
we have thesinglechanneMAP estimatorasgivenin [3].

4. EXPERIMENTAL RESULTS

In this sectionwe comparethe performanceof the joint speech
spectralamplitudeestimatorsvith the well known singlechannel
EphraimandMalahalgorithm.Both M singlechannelestimators
andthejoint estimator®utputM enhancedignals.All estimators
wereembeddedh the DFT basechoisereductionsystemin figure
1, wherethe noisepower spectradensitywasestimatedy means
of Minimum Statistics [7].

To measurehe performanceahe noisereductionfilter wasapplied
to speeclsignalswith addednoisefor differentSNRs.Theresult-
ing filter wasthenutilized to processpeechandnoiseseparately
The speechguality of the noise-reducedignalwas measuredy
calculatingthe segmentalspeechSNR betweenoriginal and pro-
cessedpeech.On the otherhand,the amountof noisereduction
wasmeasuredby dividing segmentainputandoutputnoisepower.
In all experimentswe do not apply additional(commonlyused)
soft weighting techniquesin order to isolate the benefitsof the
joint speectestimatorcomparedo the singlechannelestimator
To studythe performancen ideal conditions,we first utilize the
estimatorson M = 4 identical speechsignalsdisturbedby un-
correlatedwhite noise. Figure 3 plots noisereductionandspeech
quality of the noisereducedsignal averagedover all four micro-
phones.Both joint estimatorgrovide a significanthigherspeech
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Figure 3: Speechyuality and noisereductionof 1D/MD-MMSE
andMD-Map for 4 signalscontainingidenticalspeechandwhite
uncorrelatedhoise

quality and noiseattenuatiorthanthe single channelMMSE es-
timator. The MAP estimatorconditionedon the noisy amplitudes
specificallyoutperformghe MMSE estimatoiby ahighernoisere-

duction. TheMMSE estimatoiconditioneconthecomplex spectra
deliversamuchhigherspeectquality.

Insteadof white uncorrelatedhoise, we now mix the speectsig-
nal from 0° with noiserecordedwith a linear microphonearray
insidea crowded cafeteria.Figure4 plotsthe performanceof the
estimatorausingM = 4 microphonewith aninterelemenspac-
ing of d = 12e¢m. Comparedto figure 3 the gain in terms of
speechquality prevails. The amountof additional noise reduc-
tion decreasedrigure5 shavs the performancevhenusingnoise
recordingsfrom insidethe crovded cafeteriawith half the micro-
phonedistancei.e. d = 6¢m interelemenspacing. Theamountof
noisereductionprovided by the joint estimatorgdecreasedueto

|-834




SpeechuaIity

o
. pp
£° e |
e
Z 0 eemT T
Sasp et e
R SRR
- R
O 10F et -~ e |
, == MdMMSE
g co MAMAP

5 : |

I . 0 15 20

~SNRindB

3 NoiseReduction
© 8+ |
2 — 1dMMSE
: - - MdMMSE
B gl o
S B
O R L
- I R A S
o
e 7
C_) ------------
= R R ey
- 2 L ‘ :
S . - s 20

SNRin dB

Figure4: Speechguality and noisereductionof 1D/MD-MMSE
andMdMap for 4 signalscontainingspeeckrom 0° andcafeteria
noise(microphonedistanced = 12¢m)

theincreasedorrelationatlow frequenciesccordingo (5). How-
ever thereis still a significantimprovementleft. The Md-MAP
estimatorstill outperformshe singlechannelMMSE estimatorin
termsof both speechquality andnoiseattenuation.
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Figure5: Speechguality and noisereductionof 1D/MD-MMSE
andMdMap for 4 signalscontainingspeeckrom 0° andcafeteria
noise(microphonedistanced = 6¢m)

Finally we examinetheimportantDOA dependengc of the esti-

mators.Figure6 depictsthe performancef the estimatorswhen
thedesiredsignalarrivesfrom 60, i.e. the desiredsignalsarenot
in phaseary more.
It canbeseerfrom comparisorwith figure4, thatthespeechyual-
ity of thejoint MMSE estimatordecreasesignificantly However,
thechangeof speectDOA hasnoinfluenceontheperformancef
the MAP estimatorconditionedon the noisyamplitudes.
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Figure6: Speechyuality and noisereductionof 1D/MD-MMSE
andMdMapfor 4 signalscontainingspeectrom 60° andcafeteria
noise(microphonedistanced = 12¢m)

5. CONCLUSION

We have derived analyticallya multichannelMMSE anda MAP
estimatorof the speechspectralamplitudes,which can be con-
sideredasgeneralizationsf [1] and[3] to the multichannelcase.
Both estimatorsprovide a significantgain comparedo the well
known EphraimandMalahestimatomwhenthespeecttomponents
arein phase. Moreover, the MAP estimatorconditionedon the
noisyspectrabmplitudegperformsaDOA independenspeecten-
hancementThe multichannelnoisereductionsystemusingthese
estimatoroutputsmultiple enhanceaignalswhich cancombined
by abeamformefor additionalspeeclenhancement.
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