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ABSTRACT

This paperintroducestwo short-timespectralamplitudeestima-
tors for speechenhancementwith multiple microphones.Based
on joint Gaussianmodels of speechand noise Fourier coeffi-
cients the clean speechamplitudesare estimatedwith respect
to the MMSE or the MAP criterion. The estimatorsoutperform
single microphoneminimum meansquareamplitudeestimators
whenthe speechis highly correlatedandthenoiseis sufficiently
uncorrelated. Whereasthe first MMSE estimatoralso requires
the desiredsignals to be in phase,the secondMAP estimator
performsa direction-independentnoisereduction.Theestimators
are generalizationsof the well known single channelMMSE
estimatorderivedby EphraimandMalah andtheMAP estimator
derivedby Wolfe andGodsill respectively.

1. INTRODUCTION

Speechcommunicationappliancessuch as voice-controlledde-
vices, hearingaids and hands-freetelephonesoften suffer from
poorspeechquality dueto backgroundnoiseandroomreverbera-
tion. Singlemicrophonespeechenhancementalgorithms,e.g. the
Minimum Mean SquareError (MMSE) estimatorof the speech
DiscreteFourier Transform(DFT) amplitudes[1], can achieve
highnoisereductionat theexpenseof moderatespeechdistortion.
With multiple microphonesspatialinformationcanbe exploited,
e.g. by beamforming,to reducenoiseandreverberationcausing
only very little speechdistortion. However, if the Direction Of
Arrival (DOA) cannot be estimatedwith sufficient accuracy, the
performanceof thebeamformingsystemdegrades.
In this contribution we proposetwo estimatorsfor speechDFT
amplitudesthat exploit the benefits of multiple microphones.
Whereasthefirst estimatorrequiresthedesiredsignalcomponents
to be in phase,the secondestimatorsdeliversDOA independent
noisereduction.

Figure 1 shows an overview of the multichannelnoise reduc-
tion systemwith the proposedspeechestimators.The time sig-
nals �����	��

������������������� from � microphonesaresegmented
andmultiplied by half overlappingHannwindows. Theresulting
blocksaretransformedvia FFT. � � ��� 
 denotesthecomplex value
of signal � in DFT bin � . For the sake of brevity the frequency
index � is omitted.�!�#"%$
�'&�(*),+-"%./��&�(�01+32546�873�9�:�;���<� �=�;� (1)�!� consistsof a speechcomponent>!�#"%./�	& (�01+ andnoise46� . .
�
denotesthespectralamplitudeof speechand ?3� thecorresponding
phase.
Thenoisevariances@3AB + areestimatedseparatelyfor eachchannel
andarefed into aspeechestimator. If �C"D� , theminimummean
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Figure1: MultichannelNoiseReductionSystem

squareshorttimespectralamplitude(MMSE-STSA)estimator[1],
its logarithmicextension[2], or lesscomplex MAP estimators[3]
canbeappliedto calculatereal spectralweights

GIH
for eachfre-

quency. If �KJ=� , a joint estimatorcanexploit informationfrom
all � channelsusing a joint statisticalmodel of the DFT coef-
ficients. After IFFT and OverlapAdd � noisereducedsignals
aresynthesized.The remainderof the paperis organizedasfol-
lows: Section2 introducestheunderlyingstatisticalmodelof mul-
tichannelFouriercoefficients. In Section3 two new multichannel
spectralamplitudeestimatorsarederived. First,a minimummean
squareestimatorthatevaluatestheexpectationof thespeechspec-
tral amplitudeconditionedon all noisycomplex DFT coefficients
is described.Secondly, a maximuma posteriori(MAP) estima-
tor, conditionedon thejoint observationof all noisyamplitudesis
proposed.Finally, in Section4, the performanceof theproposed
estimatorsin idealandrealenvironmentsis discussed.

2. STATISTICAL MODELS

Motivatedby thecentrallimit theorem,realandimaginarypartof
theDFT coefficientsareusuallymodelledaszeromeanGaussian
[4].This leadsto the following statisticalmodelfor a DFT bin of
the � -th signal.(cf. [1],[5]):L �	. � ��? � 
M" . �N @ AO + PRQTSVU3W . A�@ AO +;X (2)L �	$/��Y ./��
M" Z $
�@ AB + PRQTSI[\W $ A� 2]. A�@ AB +_^8`ba U Z ./�	$/�@ AB + X (3)L �c�!��Y ./����?d��
M" �N @ AB + PRQTS U W Y � � W . � & (�0 + Y A@ AB + X � (4)

Here @3AO + describesthevarianceof thespeechin channel� and `badenotesthe modifiedBesselfunction of the first kind andzeroth
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order. To extendthis statisticalmodelfor multiple noisy signals,
we considerthe typical noisereductionscenarioof figure 2, e.g.
insidea roomor a car. A desiredsignal F arrivesat a microphone
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Figure2: Speechandnoisesourcesarriving at microphonearray

array from angle
f
. Multiple noisesourcesarrive from various

angles.Theresultingdiffusenoisefield canbecharacterizedby its
coherencefunction. The magnitudesquaredcoherencebetween
two omnidirectionalmicrophones� andh of adiffusenoisefield is
givenby��>9i � ( ��j 
�" Y kl� ( ��j 
�Y Ak �m� ��j 
�k (n( ��j 
 " siA6o Z N j e � (p q � (5)

Therefore,above a critical frequency dependingon the micro-
phonedistance,the MSC becomesvery low and thus the noise
componentsof the noisy spectracan be considereduncorrelated
with r �,4 � 4Vs( �\"ut @ AB + 7v�d"5hw 7v�
x"5h (6)

Hence(3) and(4) canbeextendedtoL �	$ H ���b�R����$\yVY ./z{
|" y}��~ H L �	$
��Y .
z'
 (7)L �c� H �������b����yVY ./z ��?dz{
|" y}��~ H L �c�!��Y ./z ��?dz{
 (8)

for eachg �����9���b���=� . We assumethetime delayof thespeech
signalsbetweenthemicrophonesto besmallcomparedto theshort
time stationarityof speechand thus the speechspectralampli-
tudes ./� to be highly correlated.However, dueto nearfield ef-
fectsanddifferentmicrophoneamplifications,we allow a devia-
tion of the speechamplitudesby a channeldependentfactor p � ,
i.e. .
�3" p �!��. and @ AO + " p A� @ AO .
In analogyto the singlechannelMMSE estimatorof the speech
spectralamplitudes,the resultingjoint estimatorswill be formu-
latedin termsof a priori andaposterioriSNRs� ��" @ AO +@ AB + 7��T��" $ A�@ AB + � (9)

wherethea priori SNRs
� � areestimatedby thedecisiondirected

approach[1].

3. M-D SPECTRAL AMPLITUDE ESTIMATORS

We derive Bayesianestimatorsof the speechspectralamplitudes.
z , g �����9���b����� using information from all � channels.
First,a straightforwardmultichannelextensionof thewell known
MMSE-STSA by Ephraim and Malah [1] is derived. Second,
a practically more useful MAP estimatorfor DOA independent
noisereductionis introduced. All estimatorsoutput � spectral

amplitudesand thus � enhancedsignalsare delivered by the
noisereductionsystem.

3.1. Estimation conditioned on complex spectra

The single channelalgorithm derived by Ephraim and Malah
calculatesthe expectationof the speechspectralamplitude .
conditioned on the observed complex Fourier coefficient �!z ,
i.e.

r ��./z�Y �!z{� . In the multichannelcase,we can condition
the expectationof eachof the speechspectralamplitudes. z on
the joint observation of all � noisy spectra�!� . To estimatethe
desiredspectralamplitudeof channelg we have to calculate:E. z " r �,. z Y � H �b�����R��� y � (10)" �� a

A���
a . z L �	. z ��? z Y � H �R��������� y 
 e ? z e . z � (11)

This estimatorcanbeexpressedvia Bayes’Ruleandusing(8) asE./z�" �� a ./z A��� a L �	.
z!��?3z'
 y���~ H L �c�!��Y ./z ��?dz{
 e ?dz e .
z�� a A��� a L �	. z ��? z 
 y���~ H L �c� � Y . z ��? z 
 e ? z e . z � (12)

To solve (12)we assumeperfectDOA correction,i.e. ?3��� "�? for
all �����;���R������� . Inserting . � "�� +��� . z in (8),(4) the integral
over ? in (12) becomes:([6] eq.(3.339))A���
a PRQTS�[
W y� ��~ H Y �!� W � +� � .
z�& 0 Y A@ AB + ^ e ?:"PRQTS [ W y� ��~ H Y �!��Y A�2�� � +��� ./z�
�A@ AB + ^ `ba U Z ./z������

y� ��~ H � +��� �!�@ AB + ����� X � (13)

The remaining integrals over ./z can be solved using ([6] eq.
(6.631.1)). After some straightforward calculations, the gain
factorfor channelg is obtainedasG z " E./zY � z Y " ������� ��
9�����  � z�Tz¢¡��-2¤£ y��~ H � �c¥ �

¦ HI§¨© W w � �17b��7 ��� £ y��~ H!ª �T� � �	& (*),+ ��� A��2¤£ y��~ H � � «*¬­ � (14)¦ H
denotestheconfluenthypergeometricseriesand � theGamma

function.Theargumentof
¦ H

containsasumof apriori andapos-
teriori SNRswith respectto thenoisy phases®�� , �\�¯���9�����*��� .¦ H

hasonly to beevaluatedonce,sincetheargumentis indepen-
dentof g . Note,that in caseof �°"±� (14) is thesinglechannel
MMSE estimatorderivedby EphraimandMalah.

3.2. Estimation conditioned on spectral amplitudes

The assumption? � � "±?¤���²�%������������� introducesa DOA de-
pendency, sincethis is only given for speechfrom

f " w�³
. For a

DOA independentspeechenhancementwe conditiontheexpecta-
tion of E. z on thejoint observationof all noisyamplitudes$ � , i.e.E. z " r ��. z Y $ H �����b����$ y � .
Whenthe time delayof the desiredsignal F in figure 2 between
the microphonesis small comparedto the short time stationarity
of speech,thenoisyamplitudes$ � areindependentof theDOA

f
.

Unfortunately, afterusing(3) and(7), we have to integrateover a
productof Besselfunctions,which leadsto extremelycomplicated
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expressionsevenfor thesimplecase�C" Z .Therefore,searchingfor a closedform estimator, we investigate
a MAP solutionwhich hasbeencharacterizedby [3] asa simple
but effective alternative to themeansquareestimatorin thesingle
channelapplication.
We searchfor the speechspectralamplitude E. z that maximizes
the pdf of .
z conditionedon the joint observation of $/�/���V��;�����R���=� .E./z " ´,µ�¶�·¸´ Q¹ � L �	./z�Y $ H �����R����$\y8
 (15)" ´,µ�¶�·¸´ Q¹ � L �	$ H �R�b������$ y Y . z 
 L �	. z 
L �	$ H �R�b������$ y 
 � (16)

Weneedto maximizeonly º]" L �	$ H �R��������$/y»Y ./z�
�� L �	.
z{
 , sinceL �	$ H �����b�R��$ y 
 is independentof . z . It is howevereasierto max-
imize ¼m½�¶ �	º-
 , withouteffectingtheresult,becausethenaturallog-
arithmis a monotonicallyincreasingfunction. Using(7), (2) and
(3) we get¼<½�¶-º]"¾¼<½�¶ o ./zN @ AO � q W . Az@ AO � 2 y� ��~ HÀ¿ ¼<½�¶ U Z $/�@ AB +�XW $ A� 2¾��� +� � 
 A . Az@ AB + 25¼<½�¶ U ` a U Z � +� � ./z�$/�@ AB + X6X\Á � (17)

A closedform solutioncanbefound if themodifiedBesselfunc-
tion ` a is consideredasymptotically. For large arguments,the
Besselfunctioncanbeapproximatedby`ba �cÂ!
9Ã �ª Z N Â &�Ä�� (18)

Here, the term in the likelihood function containingthe Bessel
functionsimplifiesto:¼<½�¶ U ` a U Z � +� � ./zT$/�@ AB +ÅX6X Ã Z � +� � ./zT$/�@ AB + W �Z ¼<½�¶ U!Æ N � +� � ./z�$/�@ AB +ÅX �

(19)

Differentiationof ¼m½�¶lº andmultiplicationwith theamplitude. z
resultsin ./z9Ç�È É�Ê�ËÇ ¹ � " w. Az U3W �@ AO � W y� ��~ H �T� +� � 
 A@ AB +VX 2¤. z y� ��~ H � +� � $
�@ AB + 2 Z W �Æ " w �

(20)

Thisquadraticexpressioncanhavetwo zeros,for �ÌJ Z it is also
possiblethatnozerois found. In thiscasetheapex of theparabolic
curve in (20) is usedasapproximation,identicalto therealpartof
the complex solution. The resultinggain factor of channel g is
givenas G z " Í Î �Ï �Z 2 Z £ y��~ H � � ��Ð Pl[ y� ��~ HdÑ � � � � 2���  U y� ��~ H Ñ �T� � � X A 2%� Z W ��
 U �l2 y� ��~ H � � X

Ò ÓÔÓÕ (21)

For the calculationof the gain factors,no exotic function needs
to be evaluatedany more. Also, Re��� � hasonly to be calculated
once,sincetheargumentis independentof g . Again, if �Ö"×� ,
we have thesinglechannelMAP estimatorasgivenin [3].

4. EXPERIMENTAL RESULTS

In this sectionwe comparethe performanceof the joint speech
spectralamplitudeestimatorswith thewell known singlechannel
EphraimandMalahalgorithm.Both � singlechannelestimators
andthejoint estimatorsoutput � enhancedsignals.All estimators
wereembeddedin theDFT basednoisereductionsystemin figure
1, wherethenoisepower spectraldensitywasestimatedby means
of Minimum Statistics [7].
To measuretheperformancethenoisereductionfilter wasapplied
to speechsignalswith addednoisefor differentSNRs.Theresult-
ing filter wasthenutilized to processspeechandnoiseseparately.
The speechquality of the noise-reducedsignalwasmeasuredby
calculatingthe segmentalspeechSNR betweenoriginal andpro-
cessedspeech.On theotherhand,theamountof noisereduction
wasmeasuredby dividing segmentalinputandoutputnoisepower.
In all experimentswe do not apply additional(commonlyused)
soft weighting techniquesin order to isolate the benefitsof the
joint speechestimatorscomparedto thesinglechannelestimator.
To studythe performancein ideal conditions,we first utilize the
estimatorson �Ø" Æ identical speechsignalsdisturbedby un-
correlatedwhite noise.Figure3 plotsnoisereductionandspeech
quality of the noisereducedsignalaveragedover all four micro-
phones.Both joint estimatorsprovide a significanthigherspeech
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Figure3: Speechquality andnoisereductionof 1D/MD-MMSE
andMD-Map for 4 signalscontainingidenticalspeechandwhite
uncorrelatednoise

quality andnoiseattenuationthanthe singlechannelMMSE es-
timator. TheMAP estimatorconditionedon thenoisyamplitudes
specificallyoutperformstheMMSE estimatorby ahighernoisere-
duction.TheMMSE estimatorconditionedonthecomplex spectra
deliversa muchhigherspeechquality.

Insteadof white uncorrelatednoise,we now mix thespeechsig-
nal from

w ³
with noiserecordedwith a linear microphonearray

insidea crowdedcafeteria.Figure4 plots theperformanceof the
estimatorsusing �K" Æ microphoneswith an interelementspac-
ing of

e "Ù� Z pRÚ . Comparedto figure 3 the gain in termsof
speechquality prevails. The amountof additionalnoisereduc-
tion decreases.Figure5 shows theperformancewhenusingnoise
recordingsfrom insidethecrowdedcafeteriawith half themicro-
phonedistance,i.e.

e "%Û p*Ú interelementspacing.Theamountof
noisereductionprovidedby the joint estimatorsdecreasesdueto
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Figure4: Speechquality andnoisereductionof 1D/MD-MMSE
andMdMap for 4 signalscontainingspeechfrom

w ³
andcafeteria

noise(microphonedistance:

e "=� Z p*Ú )

theincreasedcorrelationatlow frequenciesaccordingto (5). How-
ever thereis still a significantimprovementleft. The Md-MAP
estimatorstill outperformsthesinglechannelMMSE estimatorin
termsof bothspeechqualityandnoiseattenuation.
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Figure5: Speechquality andnoisereductionof 1D/MD-MMSE
andMdMap for 4 signalscontainingspeechfrom

w ³
andcafeteria

noise(microphonedistance:

e "%Û pRÚ )

Finally we examinethe importantDOA dependency of theesti-
mators.Figure6 depictstheperformanceof theestimators,when
thedesiredsignalarrivesfrom Û w�³ , i.e. thedesiredsignalsarenot
in phaseany more.
It canbeseenfrom comparisonwith figure4, thatthespeechqual-
ity of thejoint MMSE estimatordecreasessignificantly. However,
thechangeof speechDOA hasno influenceontheperformanceof
theMAP estimatorconditionedon thenoisyamplitudes.
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Figure6: Speechquality andnoisereductionof 1D/MD-MMSE
andMdMapfor 4 signalscontainingspeechfrom Û w,³ andcafeteria
noise(microphonedistance

e "D� Z p*Ú )

5. CONCLUSION

We have derived analyticallya multichannelMMSE anda MAP
estimatorof the speechspectralamplitudes,which can be con-
sideredasgeneralizationsof [1] and[3] to themultichannelcase.
Both estimatorsprovide a significantgain comparedto the well
known EphraimandMalahestimatorwhenthespeechcomponents
are in phase. Moreover, the MAP estimatorconditionedon the
noisyspectralamplitudesperformsaDOA independentspeechen-
hancement.Themultichannelnoisereductionsystemusingthese
estimatorsoutputsmultipleenhancedsignalswhichcancombined
by a beamformerfor additionalspeechenhancement.
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