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ABSTRACT

The paper presents a new method for all-pole model
estimation based on minimization of the weighted mean
square error in the sampled spectral domain. Due to
discrete nature of the proposed distance measure,
emphasis can be put on an arbitrary set of spectral samples
what can greatly improve the model accuracy for periodic
signals. Weighting can also be applied to improve the
fitting in certain spectral regions according to any desired
fidelity criterion. Iterative algorithm for determination of
the optimal model is proposed and an exceptionally fast
convergence rate is demonstrated. Accuracy of the
estimation algorithm is verified on an example of a
synthetic vowel for a broad range of pitch frequencies.

1. INTRODUCTION

In conventional LPC estimation techniques,
coefficients of the all-pole model are determined by
minimizing the Itakura-Saito (I-S) distance measure
between the signal spectrum and the all-pole model
spectral magnitude integrated across the whole spectrum.
Indeed, such minimization yields exactly the desired result
as long as the spectrum of the excitation signal is flat, i.e.
single impulse or white noise signal. However this
simplistic assumption does not hold for real speech
signals, so the estimation accuracy can be severely
limited, especially for periodic excitation signals (e.g.
voiced speech segments). Since such signals have a
discrete spectrum, frequency response of the vocal tract
can be measured only at frequencies corresponding to the
harmonics of the fundamental frequency. For all other
frequencies, behavior of the system is unknown and must
not be used in the all-pole estimation. Better estimation
accuracy can be obtained by fitting the all-pole envelope
only to the set of known frequency response samples of
the system. The excitation signal is still assumed to be
flat, but discrete, i.e. consisting of spectral lines.

The model that minimizes the average weighted mean
square (WMSE) spectral distance in decibels between the
signal spectrum samples and the samples of the all-pole
model evaluated at the same set of frequency points is
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proposed in this paper. This technique utilizes summation
in averaging of the estimation error, instead of integration
as in the conventional LPC. It can be applied to an
arbitrary set of frequency samples either harmonically
related or not. Desire to use the WMSE spectral distortion
measure in all-pole estimation has been present in the
speech related field from its beginning, but the
nonlinearity of the problem and nontractability of the
solution were the main advocates against it. However, this
paper will prove that the solution can be obtained in
'almost' closed form and that it is simple enough to be
implemented in most of the speech applications. The
benefit of the improved estimation accuracy offered by the
method is equally important in speech analysis and
coding, as well as in the feature extraction for speech
recognition.

2. BACKGROUND

The interaction between fine spectral structure and the
speech spectral envelope causes aliasing in the domain of
correlation coefficients. Format frequencies of the
estimated all-pole model derived from these coefficients
are biased towards the pitch harmonics. Secondly, aliasing
causes significant underestimation of formant bandwidths
especially for high-pitched female voices. Different
approaches had been tried out in attempt to solve the
above problem such as: bandwidth expansion [1][2], new
error criterion that are better suited to the statistical
properties of the excitation signal [3], or different
constrained versions of a linear prediction with certain
undesired parts of the speech signal excluded from the
correlation computation [4]. Some other approaches were
based on smoothing of the speech spectrum by
interpolation of some low order polynomial functions
between harmonic peeks of the spectrum and calculating
the LP model corresponding to the smoothed spectrum
[51.6].

Although all of the above methods give some
improvement and some of them are even quite popular,
the first attempt to solve the problem directly was the
discrete all-pole modeling method DAP [7]. Discrete
nature of the speech signal spectrum and the aliasing of
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the correlation coefficients were taken into account during
the all-pole estimation. The resulting model was the best
fit to the spectrum lines in the sense of minimizing the
discrete version of the I-S distance measure. The approach
presented in this paper is similar to DAP but with two
significant differences. Firstly, instead of I-S measure, the
discrete  WMSE spectral distance measure is used.
Secondly, instead of modifying the predictor coefficients,
the estimation is performed in the domain of line spectral
frequencies (LSFs). These two differences have
significant impact on the properties of the algorithm, as it
will be shown.

3. WMSE ALL-POLE ESTIMATION

The proposed method is iterative and calculates new
estimation of the all-pole model parameters based on the
current model and the set of spectral samples that should
be fitted by the new model in the least weighted mean
square sense. Spectral samples Y=[y,,y2,...,yN]T given in
decibels correspond to the finite set of frequencies (lines)
w;, i=1,2,...N. For voiced speech, these samples are equal
to the harmonic peeks, while the frequencies, @, match
the integer multiples of the pitch frequency.

The initial all-pole model, H(z), can be found by any of
the conventional LP techniques and is given as:

H(z)= o o

()

Magnitude response of the model H(z) expressed in dB
is given as:
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where R(w) and Q(w) are polynomials in the variable
cos(w) of the order p/2 with real roots [x;, x4, ... x,] and
[X1, X3, ... X,.1] respectively, i.e.:
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The roots x; to x, are equal to the cosine of the line
spectrum frequencies corresponding to the model H(z).
The variable G gives gain of the model expressed in dB.
Thus, through equations (4) to (6), the dB magnitude
response P(w,X) of the all-pole model is expressed as a
function of @ and parameter vector X=[x;, x,, X3,... X, G]T.

For simplicity, the gain G will be treated as p+1%
parameter denoted as x,.; in the sequel. The WMSE
spectral distance of the model to the given set of spectral
samples can now be expressed as:

N
D=D(X,Y)=Y w;-(y; - P(@;. X))’ @)
i=1
where w; is the weight of the /™ spectral sample. The
weights can be chosen according to any given fidelity
criterion as it will be discussed latter.

Direct minimization of D with respect to X yields a set
of nonlinear equations in x; to x,,. Therefore, the function
P(w,X) is expanded in the Taylor series around the initial
vector X, and approximated by only the first two terms of
expansion, i.e.:

P(0,X) = P(0,X) +S(@,X() - (X—X,) ®)

S is the row vector comprised of first derivative functions
of P(@,X) with respect to components of X determined in
the initial point X,. Since the distance D in (7) requires
only the samples of the function P(@w,X) evaluated at
frequencies @, functions P(@,X) and P(@,X,) in (8) are
replaced by column vectors P and P, respectively. Row
S(@,X,) becomes a sensitivity matrix denoted with S,
whose determination will be explained in the following
section. For expressing the distance D in the matrix form,
the weights w, to wy are placed along the main diagonal of
a diagonal matrix W, that results with:

D=[y-P|" - [W][y-P] )
By assuming the equality in the expression (8), D can
be rewritten in terms of variations of the model parameters
AX and variation of spectral values AY:
D=[AY -8, -AX]" - [W]-[AY =S, - AX] (10)
AX=(X-Xj) AY =(Y-Py) a1
The problem of estimation can now be formulated as
minimization of D with respect to AX. In other words, the
goal is to modify the parameter vector in such a way that
the new response P(@,X) matches desired samples Y in
the best possible way :
Dinin =min(D(AX)) (12)

Since D in (10) has the well-known quadratic form, the
solution of (12) is straightforward, i.e. the parameter
modification vector AX must satisfy the following matrix
equality:

D -AX=Y (13)
where the system matrix @ and column vector W are:
®=S{WS, ¥ =S W-AY (14)

Once the solution of (13) has been found, the new
parameter vector can be formed as:

If the solution AX is substituted back into the
expression (10) for spectral distance D, it is easy to prove
that D,,;, is given by:
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Dyyin =AYT-W-AY —WT.AX (16)

The first term is the initial distance D(X,,Y), while the
second term is the reduction due to the correction vector
AX. However, one should keep in mind that this is only an
estimate of the distance, since it is based on the
approximate model of P(wX) in (8). Therefore, to
evaluate the actual distance of the new model X, P(@,X;)
should be evaluated according to equations (4) to (6).

For non-negative weights, the pxp matrix @ is
symmetric, positive semi-definite matrix, such that any
efficient solution method can be applied. Numerical
complexity of the solution is comparable to the covariance
LP procedure. Since the minimization is reduced to the
very well known least squares problem given in (13) and
(14), all aspects concerning regularity of the matrix ® and
uniqueness of the solution can also be applied here and
will not be discussed.

Modification of the all-pole model is performed by
modifying the LSF vector as in (15), so there is a potential
risk that the new model might become unstable. However,
this problem has been well studied in the LSF quantization
literature and there are several safety techniques for
ensuring the stability of H(z) in the LSF domain, that can
also be applied in this algorithm after modification in (15).

4. CONVERGENCE OF THE SOLUTION

Since only the approximation of P(@,X) was used in
the minimization procedure, the new model isn't necessary
the best solution, but nevertheless it is much better
estimate then the initial one. If desired, the whole
procedure can be repeated by expanding P(@,X) around
the new point X, finding the new sensitivity matrix S,
new correction AX and new model X,. Each iteration like
this will yield better and better estimate.

The convergence rate depends on the accuracy of
approximation of P(@,X). Due to the favorable spectral
sensitivity properties of the LSFs, the accuracy of (8) for
small variations AX is much better then for the other
parametric representations of the all-pole model [8]. This
constitutes one of significant advantages of the proposed
method compared to [7] in which the modification is
performed directly on the predictor coefficients. It will be
shown on the example of a synthetic vowel that a single
WMSE iteration of the proposed method performed on the
initial autocorrelation LP model is sufficient to reduce the
modeling error practically to zero, irrespectively of the
pitch frequency.

5. SPECTRAL SENSITIVITY OF THE MODEL

Spectral sensitivity matrix S={s;;} is necessary for
computation of the matrix @ and the column vector V.
The matrix has N rows for each of w, and p+1 columns
corresponding to LSFs x,, x,, x3,... x,, and to the gain term

x,+1=G. The first derivatives of P(@,X) with respect to
components of X are readily available from the equations
(4) to (6) as:
P(@,X) _(1-cosw)R; (@)
dx; C(w,j)

, J=24,...,p a7

P(,X) _ (1+cos@)0] (@)
dx J C(w,j)
) In(10) w\|?
C(w, j)=—-——| Ale’
(@.J) 40(cosa)—xj)‘ (e )‘ (19)
oP(w,X) _ oP(w,X) _
8 xp+l 8 G
Functions R( @) and Q,(@) are similar to R(®) and Q(w) in
(5) and (6), but are missing one product term, i.e.:
p/2
R (@)= []2(cos(@)-xy;) @1
i=1
2i#j
p/2

0;(w) = HZ(COS(CU) ~X3i1) (22)
21

5 j=1:3:"'sp_l (18)

! (20)

Finally the matrix elements s;; are evaluated as:
oP(w;,X)
S. = —
T o, 23)
Since all even columns have a lot of common factors of
(21), significant complexity reduction can be obtained in
computation. The same is also true for odd columns and
the expression (22). Furthermore, the cos(@;) term can be
evaluated and stored only once for i=1 to N and then used
in all of the above equations.

6. SPECTRAL WEIGHTING

Formulation of the proposed WMSE all-pole modeling
includes spectral weights w;. If all input spectral samples
lay exactly on any given all-pole envelope of the order p,
then the exact model with D=0 can be found in the
minimization procedure for an arbitrary choice of w;.>0,
i=1 to N. However, for the real speech signals this is never
true and the final model will only approximate the input
samples in the WMSE sense. In this case weights can be
used to put the emphasis on any given part of the spectrum
or any given spectral sample according to some perceptual
criterion, e.g. [7]. The weights for the new estimation
iteration can even be derived from the coefficients of the
current predictor estimate. For example, any of the LP
derived weightings that are commonly used for
quantization of the prediction residual in CELP coders,
can be used as convenient choice. This way, not only the
quantization of the LP residual but also the estimation of
the all-pole model itself becomes consistent with the final
distortion measure.
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7. EXPERIMENTAL RESULTS

To evaluate the proposed WMSE all-pole modeling, an
experiment was performed on a synthetic vowel 'a' as in
'father’. The filter H,(z) was excited with an ideal
synthetic periodic signal with linearly increasing pitch
from 80 Hz to 300Hz and a total duration of 20 sec @
8kHz. Spectral magnitudes of all excitation harmonics
were exactly the same. The output of the filter was used as
an input to the autocorrelation LP analysis with 200
samples Hamming window. The analysis was repeated for
each 40 new time samples, resulting in the total number of
4000 frames. For each frame k, the estimated LP model
Hi(z) was compared to the template model H,(z), by
computing the conventional SD distortion measure as:

SD(k)=-—= dw (24)

V7 \ oo H,(e/®)

The LP model was then used as an initial all-pole
model for 10 iterations of DAP estimation [7] and 2
iterations of the proposed WMSE estimation, both with
unit weights. It was observed that DAP modeling has
problems with convergence for default step sizes, so the
step size reduction factor =0.6 was applied as suggested
in [7]. In the case of WMSE modeling, the optimal step
size is computed automatically according to (13). For both
techniques, the model mismatch was computed for each
frame and iteration according to (24) and is plotted in Fig.
1. and 2. as a function of the pitch frequency. It can be
observed that DAP estimation fails to resolve the template
model even after 10 iterations, while for WMSE modeling
the estimation error is bellow 0.35 dB after the first
iteration and practically equal to zero after the second one.
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Figure 1. Estimation error of the DAP modeling
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8. CONCLUSION

It has been demonstrated that WMSE distance measure
in the sampled spectral domain can be successfully
applied for the all-pole model estimation. The proposed

technique resolves problems associated to the deficiencies
of the conventional linear prediction methods and
significantly improves the spectral match even in a single
iteration. Interframe LSF quantization techniques can
greatly benefit form WMSE estimation, since random
fluctuations due to modeling errors are reduced. Residual
signal quantization can also be improved since WMSE
all-pole model performs better whitening of the spectral
peeks then the conventional models. Furthermore, since
the complexity of the method is comparable to the
covariance LP method, it can be easily applied to any
real-time system.
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