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ABSTRACT

A new algorithm is developed for voiced-unvoiced speech
discrimination in noise. Short segments of speech are
modeled as a sum of basis functions from a Gabor
dictionary. In each iteration, a Gabor atom is fitted (using
the matching pursuit algorithm) to the residual obtained by
subtracting the best-fit Gabor atom from the previous
residual. Multiple discriminant analysis is used to reduce
the dimensionality of the vector of Gabor coefficients to
give a low-dimensional feature vector for classification. A
Radial Basis function neural network is trained on the
reduced feature vector set to discriminate between voiced
and unvoiced speech/silence segments. On a database of 62
sentences in 5-dB SNR speech-shaped noise, 84% correct
classification accuracy was obtained.

1. INTRODUCTION
 

The problem of voiced/unvoiced speech determination is an
important one and has been worked on extensively by
researchers [1]-[6] during the last three decades. In [1,2] a
statistical parametric method was proposed whereas in
[3,4,5] non-parametric methods based on linear
discrimination functions, multi-layer feedforward and
recurrent neural networks were adopted. In [6], a two-
channel approach which made use of the speech and
electroglottogram signals was pursued.

Most of the above methods proposed for
voiced/unvoiced classification were implemented and tested
in quiet. Voiced/unvoiced classification in noise, however,
is a far more challenging task since the noise can potentially
mask low-energy speech segments such as fricatives (e.g.,
/f/, /th/) and stop-consonants (e.g., /b/, /d/). Also, most of
the above methods utilized long analysis frames with some
[2] using as large as 40-ms duration frames.
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In this paper, we propose an algorithm for
voiced/unvoiced speech discrimination in noise that is
based on the Gabor atomic decomposition of the speech
waveform. The Gabor representation was chosen because it
uses a family of functions that are well localized in both
time and frequency. Such a representation received only a
limited attention in speech processing. Gabor atomic
decomposition for audio signal enhancement has previously
been suggested by Wolfe et al. [7] and has been applied to
radar target recognition by Shi and Zhang [8]. The well-
localized, in time and frequency, properties of the Gabor
functions allow us to analyze the speech signal using short-
duration segments. In this paper, we investigated
voiced/unvoiced classification of 3.2-ms duration frames.

This paper is organized as follows. Section 2 describes
the proposed algorithm, Section 3 presents the experimental
results and Section 4 presents our conclusions.

2. PROPOSED VOICED/UNVOICED
CLASSIFICATION ALGORITHM

The speech signal f(t) can be represented as:
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where M is the order of decomposition, na are the Gabor

coefficients and )(tg nγ are the basis functions, also called

the Gabor atoms. A Gabor atom consists of a cosine-
modulated Gaussian window function:
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)( tetg π−= is the Gaussian window function and

( )wvus ,,,=γ are the time-frequency parameters. The

function )(tgγ is centered at u and its energy is

mostly concentrated in a neighborhood of
u whose size is proportional to s. The space
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of time-frequency parameters can be discretized as

( ),,,, wivkaupaa jjj ∆∆∆= −γ with ,2/1,2 =∆= ua

,1
2 20,log0,6/, +−<≤≤<=∆=∆ jNpNjwv ππ

120,20 1 ≤≤<≤ + ik j to form the so called Gabor

dictionary. Here N is the number of samples in a frame.
As discussed in [7], the Gabor dictionary is highly

redundant, and a regression model was used in [7] to
reduce the Gabor dictionary. In this paper, we use the
matching pursuit algorithm, proposed in [9], to prune the
Gabor dictionary. The matching pursuit algorithm is a
greedy algorithm that chooses at each iteration a waveform
that is best adapted to an approximate part of the signal
and hence is locally adaptive. It has been shown [9] that
for highly non-stationary signals (e.g., plosives), the
matching pursuit algorithm performs better than a globally
adaptive algorithm like that proposed by Coifman and
Wickerhauser [10], which selects the basis best adapted to
the global signal properties.

If ffR =0 denotes the signal being modeled, the

residual at the n-th iteration, denoted by fR n , is given

by:
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where na are the Gabor coefficients [11,12] computed as

the inner product n
n

n gfRa γ,= . The norm of the

residual ( fR n 1+ ) assesses the degree of fitness of the

Gabor atom ngγ to the residual at iteration n. In each

iteration, one Gabor atom is added to the approximation to
model the residual. The procedure continues iteratively
until a prescribed number, M, of Gabor expansion
coefficients are generated. The dictionary element chosen
at each stage is the element that provides the greatest
reduction in mean square error between the true signal f(t)

and the approximated signal )(ˆ tf . In this sense, the

speech signal structures are coded in order of importance.
This property is desirable also in cases where the bit
budget is limited, such as in low rate speech coding.

The resulting M Gabor coefficients are used in
voiced/unvoiced classification. Multiple discriminant
analysis [13] is first used to reduce the dimensionality of
the vector of Gabor coefficients. The vector of Gabor
coefficients x, of dimension M, is projected to a (c-1)

dimensional space iy where c is the number of classes.

The projection is done as:

11 -c,....,iT
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where iw are the eigenvectors which satisfy the

generalized eigenvalue problem:

iwiiB wSwS λ= (5)

where BS is the between-class scatter matrix, wS is the

within-class scatter matrix and iλ is the i-th eigenvalue.

Finally, the reduced dimensional feature vector iy is

input to a Radial Basis Function Neural Network
(RBFNN) [14,15,16] with Gaussian units that are trained
to map the feature space to the output (class) space. The
RBFNN was used because the weight matrix between the
Gaussian units and the output units can be estimated using
all the training patterns at one time. This is in contrast to
the back-propagation algorithm which uses an incremental
training approach to train multi-layer perceptrons.

3. EXPERIMENTAL RESULTS

The performance of the proposed voiced/unvoiced
classification algorithm was evaluated using 62 sentences
uttered by a male speaker. The sentences (sampled at 20
kHz) were taken from the HINT database [17]. Speech-
shaped noise [17] at 5-dB SNR was added to the clean
speech waveforms to create the noisy speech waveforms.
The data was manually segmented into voiced and
unvoiced segments with a frame size of 64 samples (3.2-
ms). A vector of M=40 Gabor coefficients was computed
for each frame. The vector was projected to a c-1
dimensional space using multiple discriminant analysis.
Here c=2, where the first class corresponds to vowels,
nasals and glides and the second class corresponds to
plosives, fricatives and silence. The reduced feature
vectors (features were scalars since c=2) were divided into
training and test sets. The training set consisted of 29,206
patterns and the test set consisted of 3,962 patterns. A
RBFNN with 15 hidden units and 2 output units
corresponding to the voiced and unvoiced classes, was
trained on the training set and tested on the test set.

The centers and the widths of the Gaussian units were
initialized by dividing the training set into 15 consecutive
segment clusters and finding the feature mean and
standard deviation for each cluster. The outputs of the
RBFNN were low pass filtered with a cutoff frequency of
15 Hz before the decision step. A voiced determination
was made when the output of the voiced RBFNN unit was
greater than that of the unvoiced unit, otherwise an
unvoiced/silence determination was made.

When tested on 7 sentences (3,962 patterns), the
RFFNN classification accuracy was 84%. Figure 1 shows
the percent correct classification as a function of the size
of the training set for a 15-unit RBFNN. As can be seen,
as the number of training patterns increased, the

I - 821

➡ ➡



0 5000 10000 15000 20000 25000 30000
72

74

76

78

80

82

84

Training set size

P
er

ce
nt

co
rr

ec
t

cl
as

si
fic

at
io

n

Figure 1. RBFNN percent correct classification as a function of
the training set size.
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Figure 2. Plot of absolute Gabor coefficients vs Gabor atom
number.

percent correct classification increased and saturated at
84%.

Figure 2 shows the absolute value of the Gabor
coefficient plotted as a function of the Gabor atom number
for voiced and unvoiced speech/silence frames. The Gabor
coefficients were averaged over 570 frames of a sentence
file. As can be seen, the Gabor coefficients for unvoiced
speech/silence frames are smaller in value than the
coefficients of voiced speech frames for Gabor atom
numbers less than 3. For Gabor atoms numbers greater
than 3, the coefficients for the unvoiced speech frames are
greater than the coefficients for the voiced speech frames.
This separation of the two classes in feature space is
implemented by the modeling of the data clusters by the
RBFNN.

Figure 3 shows an example output of the RBFNN
trained on the Gabor coefficients and the true
voiced/unvoiced decisions for the test sentence “They
watched a scary movie”. Figures 3(a) and 3(b) show the
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Figure 3. Time-amplitude waveforms of (a) the clean speech
signal, (b) the noisy speech signal, (c) true voiced decision
(dashed line), predicted voiced decision (thin solid line) and
RBFNN voiced unit output (thick solid line), (d) true unvoiced
decision (dashed line) and RBFNN unvoiced unit output (thick
solid line).

clean and noisy speech waveforms respectively with
sample number on the abscissa and amplitude on the
ordinate. Figure 3(c) shows the true (dashed line) and
predicted (thin solid line) voiced decision and RBFNN
voiced unit output (thick solid line). Figure 3(d) shows
the true unvoiced decision (dashed line) and RBFNN
unvoiced unit output (thick solid line). A hard decision
value greater than 0 corresponds to a true decision while a
hard decision value less than 0 corresponds to a false
decision.

4. SUMMARY AND CONCLUSIONS

A new method for voiced/unvoiced speech
discrimination in noise was developed. The proposed
algorithm was based on the matching pursuit algorithm
that generates a vector of Gabor coefficients. Multiple
discriminant analysis is applied to this set of coefficients
to get a reduced dimensional feature vector for
classification. A Radial Basis function neural network is
trained on the set of reduced feature vectors as a
voiced/unvoiced speech classifier. High classification
accuracy using a small frame size (3.2-ms) was obtained
for speech sentences embedded in 5-dB SNR speech-
shaped noise.
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