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ABSTRACT

Many speech recognition applications require the recognizer to
perform at peak recognition accuracy across many different do-
mains. Examples of different domains are general English, digits,
names, alphabet, etc. Here we show a way to preserve the sim-
plicity of asingle acoustic model while providing domain specific
recognition speed and accuracy. Thisis achieved by employing an
extended phoneme set that keeps a subset of phonemes specifically
for a particular domain, and a context dependency specification
that allows cross-word, cross-domain phonetic context dependen-
cies. Testing on a names recognition task going from a wrong
domain (general English) model to amultiple domain model (gen-
era English, alphabet, names) the error rate is reduced by more
than 50%. Domain-specific model trained only on the names data
further reduces the error rate by more than 50%.

1. INTRODUCTION

Traditional development of acoustic models for speech recognition
centered around collecting large amounts of training data and test
data, training the acoustic model on thetraining data and testing on
the test data. Both the training and test data came from the consis-
tent pools of speakers, recording utterances that are consistent in
recording conditions, topics and language structures. We consider
those as in-domain or domain-specific acoustic models and recog-
nition results. It has always been known that any changesto any of
the domain characteristics can drastically reduce recognition per-
formance. Examples of the types of differences include: chang-
ing the microphone from a close-talking high quality microphone
to a telephone receiver; training on continuous speech, testing on
isolated utterances; training on general English, testing on small
vocabulary tasks like digits or alphabet.

Recent proliferation of dialog management systems have im-
posed many potentially debilitating requirements on acoustic mod-
elsto perform under many different conditions [3]. In an interac-
tion between human users and an automated speech recognition
system guided by an automatic dialog manager, the speech recog-
nition system would be expected to handle different types of ut-
terances. For example, users might provide arequest or a descrip-
tion using genera English. Users might provide account numbers
that contain digits and spelled letters. They might provide tele-
phone numbers as digit sequences, their names, generic responses
to confirmation requests, dates and times, addresses, etc. Idealy,
each one of those types of utterances, which we here call domains,
would be handled by the domain-specific model that was trained
using in-domain training data and using in-domain trained lan-
guage model. The problem with that approach is that it requires
training many different models with carefully filtered training data
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which would need to be swapped many times during the interac-
tion between users and dialog systems. Also, it would create un-
surmountabl e problemsif asingle utterance contained speech from
more than one domain. An obvious example is of a digit string,
like a telephone number, being embedded inside a general English
context.

Traditionally, this kind of a problem was infrequent, and it
was handled by pooling the data from all the domains into a sin-
gle sub-word unit based acoustic model, typically using clustered
triphones as acoustic units. We describe an approach that allows
usage of a single acoustic model that provides recognition perfor-
mance equivalent to amodel trained using in-domain training data
and tested on in-domain data, including the difficult case when
data from multiple domains occurs in a single contiguous utter-
ance.

2. MULTIPLE-DOMAIN MODEL STRUCTURE

The underlying structure of all of the acoustic models described
here is based on triphonic HMMs with three states left-to-right
HMMs per triphone. They al use four silence models, two with
single state and two with three state left-to-right HMMs. All the
states were modeled with a 10-component Gaussian mixture ex-
cept for one single state silence state which was modeled with a
24-component Gaussian mixture.

Given the basic structure of the acoustic model the only flexi-
bility that could allow modifications that would result in multiple
domain-specific acoustic models within a single model structure
was the selection of the phoneme inventory. An extended phoneme
set was selected so that different groups of phonemes represent
different domains. This resulted in domain-specific sub-models.
Representation of such an extended phoneme set is best made by
using the conventional phoneme representation and reserving it
for the general English domain. All other domains use the same
phoneme set (or its subset) with a suffix (a diacritic). However,
the phoneme selection is not limited to the conventional English
phoneme set, and an example of such divergence is in the selec-
tion of a head-body-tail subword representation for the digits. An
example of a small dictionary representing a typical small subset
of words from the general English, names, digits and alphabet do-
mains can be seen in Table 1. Here we use the following suffixes
asdiacritics: “_d” - digits; “_a" - aphabet; “_n" - names.

Given the extent that the subword inventory in the example
here differs from a conventional phoneme set, it should be referred
to as a subword set instead. However, due to the possible confu-
sion and an ingrained custom to use the term phoneme set regard-
less of the subword units' characteristics, the rest of the paper will
continue to use the common term phoneme set.

The acoustic models in the experiments described below all
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WORD BASEFORM
am am

I ay

therefore | dhehrfaor
think thih ng k

A ey_a

J jh.aey_a

L eh,al_a

Joe jh.now_n
Smith snm.nih_.nth.n
0z hO_d b0_d t0_d
Oo ho_d bo_d to_d
1 hldbl dtld

Table 1. A small dictionary showing different phoneme sub-sets
for general English, alphabet, names and digits, with digits repre-
sented using a non-phonemic subword units (head-body-tail).

had an extended phoneme set as shown in Table 1. Also, the model
structure was based on three-state |eft-to-right context-dependent
HMMs. One difficulty with such an approach is that the training
data is often, as it was here, composed of domain-specific col-
lection sets. Together different sets can cover several domains,
but databases that have a good representation of several domains
israre, especialy if utterances containing speech from several do-
mainsisrequired. With the phoneme set used here, it wasimpossi-
ble to find any database that provided even asmall part of possible
context across domains. Data across contexts within a single do-
main is often sparse which is why we resort to tree-based context
clustering to avoid the data sparsity problem. Thisproblemisdras-
tically more pronounced across different domains. This problem
can be resolved by ignoring cross-word context, and thus ignoring
cross-domain contexts as was done in [1]. We resolve this prob-
lem by defining the subword units in two different ways for two
different purposes. They are defined as phonemes with diacrit-
ics for the purposes of dictionary building and recognition search.
However, we define them in terms of their phonetic features for
the purposes of context definition. Thus different phonemes “” ag”
and “ae_n” can be considered equivalent phonetic contexts, even
though they are considered different entriesin the dictionary or the
search network [2]. In addition, during the tree building process to
define state tying across different contexts, which is driven by the
amount of training data and differences in the data across different
contexts, questions can be asked about which domain the phoneme
belongsto in addition to the questions about the phoneme phonetic
features. This would allow separation across domains for con-
texts if sufficient amounts of cross-domain training data speech
are available and the phonemes are different in those contexts. In
all the experiments described below, this feature was not used and
only phonetic feature-based questions were used in building the
context-dependency trees.

3. TRAINING AND TEST DATA

The training data was telephone speech collected in more than
twenty different internally consistent sets. Most of the datasets
contained data from only one domain, although some contained
data from two domains. Very rarely data from more than two do-
mains were included in the same utterance. The most common
combination of domains was alphabet + digits and general English
+ digits. The total amounts of training data for each domain is

DOMAIN #WORDS
general English 1,635,171
digits 221,031
alphabet 100,926
names/isolated utt. 73,301

Table 2. The amount of training data varied by more than an order
of magnitude between different domains.

DOMAIN # STRINGS | # WORDS
alphabet/digits 996 | 2110/4859
first/last names 551 1107

Table 3. The amount of test data for the two domains used in the
experiments. The alphabet data is less than a third of the test set
for the alphabet/digits domain.

shown in Table 2.

Two test setswere selected to demonstrate the effects of domain-
specificity in acoustic models. The first set consists of isolated
utterances of peoples’ names. Each utterance consists of spoken
first and last names. The second test set consists of recordings of
seven character account strings which consist of letters and digits.
A significant number of strings contained speech extraneous to the
domain, which was not included in the language model for the task
(eg. “6 4R asin Raymond N asin Nancy 0z 7 0z"). The language
models in both cases only considered in-domain strings as valid,
and enforced in-domain recognition output. The vocabulary size
for the names task was 2000 words, and for the alphabet/digits
task it was the 25 letters and 11 digits, including both “zero” and
“oh” versions of digit “0". The letter “O” was not used to avoid
the obvious confusion between the letter and digit versions both of
which sound the same: “oh”. The amount of available test datais
shown in Table 3.

4. RECOGNITION EXPERIMENTS

Two multiple-domain acoustic models were built in order to per-
form the comparison between models with different levels of do-
main dependency. Both models were of exactly the same size and
structure shown in Table 4.

The combined size of all thedomain-specific parts of the model
and the distributions modeling silences was 7895 states and 22815
HMMs,

The first acoustic model implicitly only used domain-specific
datato train all of the model parameters, as defined in the dictio-
nary specifications. In this case all the states of al of the HMMs
corresponding to the alphabet domain phoneme set were trained
using all of the occurrences of spelled lettersin all of the training
data sets. None of the spelled letters’ data was used in training

DOMAIN # STATES | # HMMS
genera English 5235 16329
digits 660 495
alphabet 704 1891
names/isolated utt. 1296 4100

Table 4. The number of states and HMMs varied across domains
depending on the amount of the available training data as well as
recognition speed and accuracy.
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any of the remaining states of the model. Similar differentiation
applied to every distinct domain included in the model: genera
English, digits, aphabet and names. This model was used to test
the accuracy of the domain-specific model when tested on domain
specific data. We do that by testing a phabet and digits models on
combined letters and digits test set. The same model was used to
see how bad the performance is when the general English model,
which istrained only on general English data, istested on a differ-
ent domain. We use the same, now out of domain test set as before,
names and |etters/digits.

The second model is an exact duplicate of the first model for
the digits, alphabet and names domains. However, the general En-
glish part of the model was trained on the data set which was the
combined set of general English data, aphabet data and names
data. It is referred to as the multiple domain model, as it cor-
responds to the more traditional approach to acoustic modeling
whereall the datawas combined to build asingle monolithic acous-
tic model. Access to the different parts of the acoustic model in
the recognition process is controlled by the use of domain specific
diacriticsin the test setup dictionary. All of the recognition perfor-
mance plots below have three sets of results.

The first corresponds to matched conditions of using domain-
specific part of the model to recognize speech from the same do-
main (domain-specific). The second corresponds to matching one
of the combined domains in the model trained using data from
severa domains and the test domain (multiple domains). Thethird
corresponds to a mismatched model and test data domains, when
data from one domain is used to train a part of the model, in this
case general English, and is tested on different domains, like al-
phabet and names (wrong domain).

All the experiments were performed with endpointing turned
on and off using Watson 4.1 recognition platform. Itisan AT&T
platform which isused for AT& T deployed speech recognition ap-
plications.
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Fig. 1. Comparison of word recognition performance on the names
recognition task across different levels of domain-specificity, using
endpointing

Figure 1 shows the results on the names test set, with the best
performance with matching training and test domains, less accu-
rate and slower results with the multiple domain model, which is
significantly larger than the names domain model, and the worst
performance with the wrong domain model. Similar performance
is achieved when endpointing is not used as shown in Figure 2.

The differencein recognition speed is significant because while
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Fig. 2. Comparison of word recognition performance on the names
recognition task across different level s of domain-specificity, with-
out endpointing

the decoder isin theinitia silence it has to hypothesize and score
all the possible states following the silence. In the case of names
recognition thereisavery large number of possibilities (large branch-
ing factor), which keeps it slow. Once the first few phonemes have
been recognized the number of options is very small, at a reason-
able beamwidth, and the rest of the recognition takes very little
time. Removing the silence speeds up the average recognition
time.

The experimental setup is not as simple or asclear in the case
of the second test set. Idedly a test set would have been avail-
able consisting of only spelled letters. The nearest approximation
which was available was a test set consisting of account numbers
which contained strings of seven letters or digits. There were more
than twice asmany digitsasletters. In all the experiments the same
digitsin-domain model is used and the performance is quoted for
the whole test set, combining digits and a phabet results. The lan-
guage model enforced a 7-character string length, minimizing the
effect of having digitsin the string together with letters. The word
accuracy performance is shown in Figure 3 and string accuracy is
shown in Figure 4.
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Fig. 3. Comparison of word recognition performance on the names
recognition task across different levels of domain-specificity, using
endpointing

The performance difference between the threelevels of domain-
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Fig. 4. Comparison of word recognition performance on the names
recognition task across different levels of domain-specificity, using
endpointing

specificity is dightly different than for the names task. However,
there is the same pattern of significant recognition error reduction
as model becomes more domain specific. The recognition speed is
amost the same on this task as the names task when endpointing
is used, due to the small amount of silence included in the speech
files, and the reduced branching factor while searching through the
utterance-initial silence. The marginally slower speed of recogni-
tion, but with similar accuracy, can be seen in word accuracy and
sentence accuracy plots shown in Figures 5 and 6, respectively.
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Fig. 5. Comparison of word recognition performance on the names
recognition task across different level s of domain-specificity, using
endpointing

5. CONCLUSIONS

Comparison of recognition performance between three acoustic
models of different levels of domain-specificity clearly demon-
strates both the accuracy and speed advantages of matching train-
ing and test data characteristics. Here we showed a simple ap-
proach for combining the simplicity of a single acoustic model
implementation with domain-specific performance using extended
phoneme sets and phoneti ¢ feature-based context dependency clus-
tering. A model built using the proposed structure achievesdomain
specific performance, even if more than one domain is present in a
an utterance, without any changes to the decoder.
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Fig. 6. Comparison of word recognition performance on the names
recognition task across different level s of domain-specificity, using
endpointing
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