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ABSTRACT

This paper presents a purely statistical method for the automatic
syllabification of speech. A hierarchical HMM structure is used
to implement a purely acoustical model based on the phonotactic
constraints found in the English language. A well-defined DTW
distance measure is presented for measuring and reporting syllab-
ification results. We achieve a token error rate of 20.3% with a
42ms average boundary error on a relatively large set of data. This
compares well with previous knowledge- and statistically based
methods.

1. INTRODUCTION

The syllable was proposed as a unit of automatic speech recogni-
tion as early as 1975 due to its strong links with human speech
production and perception [1]. It has been suggested that many
prosodic properties such as pitch, accent and stress are most nat-
urally expressed in terms of syllables. Some researchers hypothe-
size the syllable to be the primary unit of segmentation in speech
and the basic unit of lexical access in the human mind. It is there-
for valuable to be able to automatically syllabify speech. These
syllables can be used for TTS, foreign accent identification [2] etc.

Most of the early work on automatic segmentation of speech
into syllables used knowledge-based methods. Various algorithms
have been proposed to automatically segment speech into syllables
of which Mermelstein’s convex hull method was one of the first
[3]. He achieved a token error rate (TER) of 9.5%, albeit on a lim-
ited data set of eleven sentences spoken by only two male talkers.
When the same algorithm is used to segment TIMIT into syllables,
overall performance dropped to a TER of 26.6% [4]. When modi-
fied slightly as reported by Howitt in [4], it improves to a TER of
14.6%.

Recently the focus has been on statiscally-based methods. These
have their own inherent problems in that statistical methods are un-
able to handle conditions that are not present in their training data.
Most recently Wu [5] [6] reported a 21% error rate on a subset
of OGI Numbers95 using RASTA PLPs as input to a multilayer
perceptron.

In section 2 we discuss the syllable definition we conformed
to. Next, we describe the speech material in section 3 and in sec-
tion 4 the recognition system used in our experiments with em-
phasis on hierarchical HMMs. Finally, in section 5 we discuss the
results of our experiments.
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2. SYLLABLE DEFINITION

We base our model of the syllable on the commonly accepted per-
ceptual model shown in figure 1 [7].

rhyme

syllable

nucleus coda

onset

Fig. 1. Syllable parts

The structure in figure 1 when applied to the English language
can be represented as ��

�� ��
� , where ��

� signifies � to � conso-
nants and � signifies a vowel. Employing the phonotactic con-
straints that apply specifically to English language syllables allow
us to further specify it as

�������� ������������

where the members of each group are shown in table 1.
Phonotactic contraints for the English syllable specify that when

the onset is 3 consonants long, the first consonant can only be an
/s/. According to sonority theory there must be a rising sonority
curve in the onset leading up to the nucleus. A further constraint
is that, by referring to the list of binary features in table 2, the 2nd
consonant must be [-sonorant] and the third [+sonorant][7]. There-
for the /s/ in the onset is followed by the unvoiced consonants ��
and then the voiced consonants �� .

A syllable must always have at least a nucleus, � , which we
define as all vowels, dipthongs and the schwa. Syllabic consonants
are treated as /�/+�.

Group phonemes
� /a/ /e/ /i/ /o/ /u/ /a�/ /��/ /�/ /��/ /��/ /ø/ /�/ /��/ /æ/

/œ/ /œ�/ /e�/ /ui/ /iu�/ /��/ /œy/ /a�/ /�/
�� /b/ /d/ /f/ /�/ /k/ /p/ /t/ /x/ /	/ /
h/ /��/ /
/ /�h/ /�/

/�/
�� /h/ /j/ /l/ /m/ /n/ /r/ /v/ /w/ /z/ /�/ /�/ /�/ /R/
� /s/
������ ��

�
��

�
�

���� ��

�
�

Table 1. Syllable parts
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In the coda we must conform to decreasing sonority. However
the sonority generalisation fails to account for one specific class
of possible English codas: those with clusters like /sp/ and /sk/ as
present in words like lisp and disk. We therefor include /s/ in the
second to last coda position, ������.

group description features
� vowels [+syllabic] [+sonorant]
�� voiced conso-

nants
[-syllabic] [+sonorant]

�� unvoiced
consonants

[-syllabic] [-sonorant]

� /S/ [- syllabic] [-sonorant]

Table 2. Binary features for syllable classes

Our syllable definition can be applied in defining a regular
grammar [8] for the classes in table 1 and 2 as was described by
Prinsloo in [9]. This regular grammar has an exact non-deterministic
Finite Automoton equivalent which we implement as an HMM.

3. DATABASE

The recognition experiments were performed on a subset of the
Sunspeech corpus, a set of continuous, naturally spoken utterances
in South African English and Afrikaans. Data was sampled at
16000Hz and recorded in a noise-free environment. It was tran-
scribed by trained linguists on the phone, syllable and word level.

The English subset consists of 40 different sentences spoken
by 97 different speakers with a total of 1942 utterances. All sen-
tences are not spoken by all speakers. The data was divided into a
training- and test set with 1316 utterances by 66 speakers and 626
utterances by the remaining 31 speakers respectively.

We encountered several inconsistencies in the syllable labels.
Single consonants were labelled as syllables, mostly where these
consonants are missing the label for a preceding schwa. Many
syllables were transcribed containing two vowels. Some examples
include:

- single consonants /n/, /v/, /t/, /d/, /�/, /f/, /r/, /k/ labelled as
syllables

- words like reputation where the last syllable is transcribed
as /
n/ which does not contain the implicit schwa.

- single /�h/ /
h/ /�/

- about labelled as single syllable /�b�t/ therefor containing
two nucleii

- for labelled as /fr/ therefor missing a nucleus

- thousands where the last syllable is labelled as /�n�/ missing
a nucleus

- evident split in two syllables where the first is /�v�/ again
containing two nucleii

These mislabelled syllables were marked by hand in the tran-
scriptions of both our training and test set and ignored in all sub-
sequent experiments.

The five simple syllable structures shown in table 3 account for
94% of all syllables in the Sunspeech database. This is similar to
that reported for Switchboard by Wu in [6] where eight relatively
simple structures also account for 84% of the syllables found in
the corpus.

structure type % of corpus
V 10.43

VC 13.77
CV 36.25

CVC 28.47
CVCC 5.1

Table 3. Syllable structures in Sunspeech database

4. SIGNAL ANALYSIS AND MODELLING

4.1. Signal processing

After performing preemphasis and energy normalisation in a 100Hz
- 7500Hz window, the data was parameterized using 18 dimen-
sional MFCCs with 22 filter banks. A frame length of 20ms with
a frame skip of 10ms was used. The delta, and delta of delta be-
tween successive frames were computed and the dimensions of the
result reduced using linear discriminant analysis (LDA).

4.2. Phones

We trained phone models for 56 distinct phones found in Sun-
speech, using both the training and test set. We used a simple
left to right HMM structure with one state skip. Since we wanted
the best possible input to our syllable model, the phone models
were trained using the entire set of training and test data in order
to minimise effects due to phone model inaccuracies.

We achieved an accuracy of 53% for all 56 phones tested on
the training and test set. Since we build our syllable model us-
ing groupings of these phones this level of accuracy was deemed
sufficient for our specific set of experiments.

4.3. Hierarchical HMMs

Since the phenomena that we are modelling operates on a number
of hierarchical levels, we chose to use a 4 level hierarchical HMM
(HHMM) to represent the speech with. The top level represents a
speech recording as a combination of syllables and garbage seg-
ments as is shown in figure 2. When used to analyse speech, this
level of the model generates tags with “syllable” and “garbage” as
labels.

1

Syll

0.6

garb
0.4

2

1

1

0.99

0.01

Fig. 2. Segmenter model

The syllable state from figure 2 expands to the second level
model as is shown in figure 3. This implements an FSA of the
syllable definition described in section 2.

Similarly the garbage state of 2 expands to a 6-state ergodic
HMM model on this second level. This garbage model is built us-
ing the /S/, ��, �� , � classes together with a model for “silence”
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Fig. 3. Syllable model

and one for the “unknown” tag, arranged in a fully connected con-
figuration. (The “unknown” tag found in Sunspeech is a small
collection of different phones which was not labelled by the tran-
scribers.)

As shown in figure 4 the third level in the hierarchy models
each of the class groups described in table 1. They are built as
a parallel combination of their constituent phone models which
in their turn form the fourth and bottom-most level in the hierar-
chy. This level directly interacts with the MFCC feature vectors
obtained from the acoustical signal.

1

3

n

2

1 2 3

Fig. 4. Parallel HMM model

These phone HMM models are trained separately and then in-
tegrated into the HHMM. After this integration their parameters
are kept frozen/unchanged with further training impacting only on
the higher levels of the HHMM. Specifically the entire syllable
HHMM model was trained using the time alligned syllable mark-
ings available for the training set. The resulting transition proba-
bilities are shown in figure 3.

5. RESULTS AND DISCUSSION

5.1. DTW distance measure

To allign an automatically determined syllable labelling with its
ideal hand-labelled version, a DTW procedure is used to do the
mapping between these two sequences in terms of correct labels,
substitutions, insertions and deletions[10]. Two components play
a role here namely a) the relative costs of these various types of la-
belling errors, and b) the specific local cost describing how dissim-
ilar a particular label is compared to another. A common problem

with automatic syllabification algorithms is that these measures are
often described inadequately [4]. We therefor provide the detail of
our matching procedure in the following.

We give a small but equal weighting to DTW paths corre-
sponding to substitutions, insertions and deletions (the specific
weight was 0.1). Since substitution errors results in a shorter DTW
path length than the others, this weighting results in a slight pref-
erence for substitution errors compared to insertions and deletions.

Our label distance measure algorithm takes as input the ac-
ceptable time error in fixing the boundaries of the syllables. We
call this � and used 20ms as our acceptable error margin. Refer-
ring to figure 5 we then define the overlap between the original
syllable transcription and our generated syllable boundaries.

Syllable i

t1 t2ta

tb

Syllable j

Fig. 5. Syllable overlap

Our distance measure is based on the amount of overlap and
whether the generated syllable falls within the accepted boundary
error compared to the original transcription.

Definitions:

��	
��
 �
��
��

(1)

� � acceptable boundary error (2)

Step 1:

���� �� �

�������
������

�� ��	
��
 if �� and �� � ��

�� ��	
��
 if �� or �� � ��

�� ��	
��
 if ��	
��
 � �

and �� and �� � ��

�� if ��	
��
 � ��

(3)

Step 2:

���� �� �
�
���� �� � � if ids mismatch (4)
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5.2. Syllabification results

Tabel 4 summarizes the results achieved by our automatic syllabi-
fication system.

tokens 14143
deletions 12.7%
insertions 5.7%

substitutions 2%
correct 85.4%

accuracy 79.7%
TER 20.3%

avg boundary err 42ms
std dev 36ms
max err 406ms

Table 4. Syllabification results

Our token error rate of 20.3% compares well with results ob-
tained by Howitt [4] and Wu [6] on TIMIT and OGI Numbers95
respectively.

We achieved an avarage boundary error of 42ms. With an av-
erage English syllable length of 250ms [6] this can be considered
fairly accurate.

From the results we have also noticed that, 50% of syllables do
not have codas, 13% (0.26*0.5) of syllables only have � , 26% of
syllables start with � and 5% of syllables start with /s/. This cor-
responds well with the characteristics of the hand-labelled version
of this database as summarised in table 3

6. FUTURE WORK

We used the Sunspeech database because of its existing hand-
labelled syllable-level transcriptions. We intend repeating the ex-
periment on the TIMIT database using Bill Fischer’s tsylb2 pro-
gram to generate syllable transcriptions. Fischer’s program imple-
ments the syllable model defined for English by Kahn in [11]. By
training our model on this data we will essentially be able to create
a statistical representation of Kahn’s syllable model as trained on
TIMIT. A trained model like this can easily be used as a diagnostic
tool to indicate transcription errors when labelling databases.

7. CONCLUSIONS

We have applied the concept of hierarchical HMMs to model syl-
lables. These statistical models are automatically inferred directly
from acoustical speech data. It is, however, self-evident that the
generelisation ability of these models are highly dependant on the
specific training database being used. Evaluation showed the re-
sults to be fairly accurate and comparing well to knowledge-based
approaches. The ability to observe the resultant regular grammars
describing syllable structure also holds some benefit compared to
neural-based approaches.
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