
TRIPHONE MODEL RECONSTRUCTION FOR MANDARIN
PRONUNCIATION VARIATIONS

Pascale Fung, Liu Yi

Human Language Technology Center
Department of Electrical and Electronic Engineering
University of Science and Technology, Hong Kong

{ pascale,eelyx@ee.ust.hk}

ABSTRACT

The high error rate of recognition accuracy in spontaneous
speech is due in part to the poor modeling of pronunciations. In
this paper, we propose modeling pronunciation variations
through triphone model reconstruction. We first generate partial
change phone model (PCPM) to differentiate pronunciation
variations. In order to improve the resolution of triphone models,
PCPM is used as a hidden model and merged into the pre-trained
acoustic model through model reconstruction. To avoid model
confusion, auxili ary decision trees are established for triphone
PCPMs. The acoustic model reconstruction on triphones is
equivalent to decision tree merging. The effectiveness of this
approach is evaluated on the 1997 Hub4NE Mandarin Broadcast
News Corpus (1997 MBN) with different styles of speech. It
gives a significant 2.39% absolute syllable error rate reduction in
spontaneous speech.

1. INTRODUCTION

An analysis of pronunciation variations at the acoustic level
reveals that pronunciation variations include both complete
changes and partial changes [2,4,6]. Complete changes are the
replacement of a canonical phoneme by another alternative
phone, such as ‘b’  being pronounced as ‘p’ . Partial changes are
variations within the phoneme and include nasalization,
centralization, voiceless, voiced, etc. Most of the current work in
pronunciation modeling attempts to represent pronunciation
variations either by alternative phonetic representations or by the
concatenation of subphone units at the state level [1,3,5]. This
approach can only model complete changes but not partial
changes. It has been shown that partial changes are very flexible
and a lot less clear-cut than previously assumed and cannot be
modeled by mere representation in alternate or concatenation of
phone units [2,5].

Recently, state level pronunciation modeling (SLPM) has
been proposed to model partial changes [5,6]. However, there
are still challenges and the improvement coming from this
approach is limited. Current SLPM scheme uses the same
phoneme unit inventory to represent partial changes. This
approach may introduce model confusion. For example, based
on SLPM, the modified HMM for ‘b’  utili zes the output

densities of ‘d’ , while the modified HMM for ‘d’  may also
utili ze the output densities of ‘b’  due to their pronunciation
variations. If the variation probabilit y between ‘b’  and ‘d’ , ‘d’
and ‘b’  is close, the confusion between the modified HMMs ‘b’
and ‘d’  is increased. In other words, although SLPM improves
the resolution of the acoustic model, it may introduce more
model confusion. Moreover, the improvement from SLPM is
based on augmenting the Gaussian mixture number of HMMs,
which inflates the number of parameters and costs more
computation time for training and decoding.

In this paper, we propose modeling pronunciation
variations through triphone model reconstruction. Partial change
phone model (PCPM) is first generated to represent the acoustic
realizations between the canonical and alternative
pronunciations. Instead of phone models, PCPMs are established
from the samples obtained through the alignment between the
baseform and surface transcriptions. Furthermore, in order to
improve the resolution of the reconstructed triphone models,
PCPM is treated as a hidden model and merged with relevant
pre-trained acoustic model through decision tree merging. One
auxili ary decision tree only maps to one standard decision tree of
the pre-trained triphone models. Hence, compared to SLPM, the
model resolution is improved to capture pronunciation
variations, while no model confusion is introduced. Only the
parameter size of the reconstructed model has a small i nflation.
Compared with phone level pronunciation modeling methods
[1,3], our acoustic level approach models pronunciation
variations with a higher resolution.

The paper is organized as follows. Section 2 describes the
motivation and the mechanism of generating PCPMs. Section 3
describes the method of acoustic model reconstruction through
decision tree merging on triphones. In section 4, experimental
results on the 1997 MBN corpus are described. Finally, we
conclude in section 5.

2. PARTIAL CHANGE PHONE MODELS

2.1. Motivation of Using PCPMs

Spontaneous Mandarin speech includes both complete changes
and partial changes. For example, Chinese initials are very
flexible and around 30% of the variations are partial changes [4].
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When partial changes occur, a phone is not completely
substituted, deleted or inserted. Therefore, the transcriber
agreement on spontaneous speech is much lower than that on
read speech. An analysis of phone level transcriptions of a
spontaneous Mandarin speech corpus – CASS corpus [4] shows
that the average transcriber agreement is 84.23%. Whereas the
agreement on a read speech corpus – 863 corpus, is around 98%.
The different transcriber agreement rate suggests that when
partial changes occur, the transcribers who are forced to use a
categorical label from the limited phonetic inventory may end up
choosing different labels for phone level representation. That is,
given a continuous acoustic signal whose relevant pronunciation
is different from the canonical pronunciation, it is very diff icult
even for phoneticians to clearly identify the exact pronunciation
changes.

Pronunciation variations can be represented at different
levels. If the variation is large enough and can be identified at
the phone level as represented by another phone, then
pronunciation modeling can be used at the phone level [1,3] to
handle this variation. If the variation is small enough, then using
more Gaussians within the acoustic model [5] can solve this
problem. However, if the variation is at an intermediate level, the
above approaches cannot differentiate and deal with this
deviation. Therefore, a more powerful model is required to
account for the ambiguity of acoustic representations caused by
partial changes. The acoustic model for spontaneous speech
should be different from that of read speech – it should have a
strong abilit y to cover partial changes as well as complete
changes.

2.2. Representation of PCPMs

In this section, we start from the recognition formulae and
deduce the representations of PCPMs. In current ASR systems,
the decoding formula is

( ) ( )BXPBPB
B

|maxarg* = (1)

where B  is the baseform sequence in terms of phoneme
representations, and X  is the input speech vectors. If words are
always pronounced in the same way, there would be no need to
consider pronunciation variations. The decoding would be
relatively easy as shown in Eq.1. However, since pronunciations
are always different in practical spontaneous speech, Eq.1 needs
to be rewritten by taking pronunciation variations into
consideration. Suppose a word can be pronounced in several
alternative ways, and assuming S  is one possible sequence of a
pronunciation, the surface form, in terms of phone
representations, the decoder formula becomes

( ) ( ) ( )



= ∑ BSPSBXPBPB

SB
|,|maxarg* (2)

where ( )BP  is the language model, ( )SBXP ,|  is the acoustic

model, and ( )BSP |  is the pronunciation model. In general, the

acoustic model training procedures assumes that

( ) ( )BXPSBXP |,| = (3)

It means that the acoustic model is trained using baseform
transcriptions. If surface form transcriptions are available, the
acoustic model training can be expressed as

( ) ( )SXPSBXP |,| = (4)

Obviously, both ( )BXP |  and ( )SXP |  are sub-optimal

acoustic models if pronunciation variations are considered. In
fact, estimating acoustic model either from the baseform or from
the surface form transcriptions is an approximation. Ideally, both
the baseform and surface form should be taken into account for
acoustic model estimation. In Eq.2, ( )SBXP ,|  is called the

partial change phone model (PCPM).

Compared with the conventional predefined phone symbol,
PCPM is represented using the phoneme/phone pair which is
automatically generated from the baseform and surface form
alignment. If the phoneme in the baseform has a different phone
representation in the surface form, this phoneme and phone will
be combined to form a phoneme/phone pair for PCPM
representation. PCPMs can be considered as an extended model
set in regard to the conventional phone model set. For example,
the baseform model is ‘b’  and its related PCPMs could be ‘b_p’ ,
‘b_f’  and ‘b_d’  due to different types of pronunciation
variations.

 2.3. Acoustics Represented by PCPMs

In order to investigate the characteristics of PCPMs, we analyze
the acoustic features represented by PCPMs. Suppose ‘b’ , ‘d’
and ‘b_d’  are the baseform, surface form and PCPM
representation, respectively. The acoustic realization for ‘b_d’  is
the acoustic samples which are labeled as ‘b’  in the baseform but
transcribed as ‘d’  in the surface form. For ‘b’ , it is the acoustic
samples which are labeled ‘b’  both in the baseform and surface
form. Similarly, acoustic realization for ‘d’  can be determined.
We first calculate the global mean bµ  and dµ  for the acoustic

samples of ‘b’  and ‘d’ , then plot the acoustic realization of ‘b_d’
according to its relative distance to bµ  and dµ  in a normalized

acoustic space. In this space, the mean distance between bµ  and

dµ  is normalized to 1.

Fig.1: Acoustic realization of a PCPM ‘b_d’  in a normalized
acoustic space

In Fig.1, the x-axis and y-axis are bµ  and dµ , the

coordinates of the points in this normalized acoustic space are
the relative distance of acoustic realization of ‘b_d’  to bµ  and
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dµ . It has been shown that the points representing the acoustic

realizations of PCPM ‘b_d’  fall mostly within the area between
(0,0) and (1,1). This means that the acoustics of a phoneme, e.g.,
‘b’  when realized as a phone, e.g., ‘d’ , lies between the average
realization of the phoneme and the average realization of the
phone. Neither the phoneme nor the phone unit can accurately
represent this type of variation. However, during the generation
of PCPMs, both the baseform and surface form representations
are taken into account. PCPMs, e.g., ‘b_d’  can be eff iciently
used to model the acoustic realizations at the intermediate level.
In addition, using PCPM is easy to differentiate pronunciation
variations. Acoustic samples belonging to ‘b_d’  are different
from those of ‘d_b’  since the tendency of pronunciation
variation from ‘b’  to ‘d’  is different from that of ‘d’  to ‘b’ . Now
we will discuss how to use PCPMs.

3. ACOUSTIC MODEL RECONSTRUCTION

Previously, we have shown that increasing the phone model set
to model pronunciation variations gives no significant
improvement [2]. In this work, we propose using PCPM as a
hidden model and merging them into the pre-trained baseform
model to improve the model’s resolution. This approach aims at
making the pre-trained model acquire the abilit y from PCPMs to
accommodate pronunciation variations.

3.1. Generating Auxiliary Decision Trees for PCPMs

Current ASR systems always use context-dependent triphone
model. In order to limit the complexity of triphone models and
avoid the sparse data problem in acoustic model training,
decision tree based state clustering is commonly used [7]. In our
system, triphones for PCPM are similar to conventional
triphones except for the central phone. The former is a phone
pair and the latter is a phoneme or phone. The trees for PCPMs
are called auxiliary decision trees, while trees for standard
triphone models are called standard decision trees. The structure
of auxili ary decision trees is similar to that of standard decision
trees. However, auxili ary decision trees are only used during the
state-tying procedure for PCPM triphone models, while not used
in the acoustic model estimation and decoding. This is because
each leaf node of decision tree represents a tied-state, and after
acoustic model reconstruction, auxili ary decision trees will be
merged into standard decision trees and will not appear in the
following steps.

3.2. Triphone Model Reconstruction through Decision
Tree Merging

Acoustic model reconstruction of the triphone model is more
complicated than that of the monophone model. The triphone
variants of the same central phone have several alternatives, the
relation between baseform triphone models and PCPMs is many-
to-many as shown in Fig.2.

Since the leaf node of decision tree represents a tied-state
triphone unit in tree-based state tying system, therefore, acoustic
model reconstruction equals to tree merging between auxili ary
decision trees and standard decision trees. The mapping nodes
between auxili ary trees and the relevant standard tree can be

determined according to the Minimum Gaussian Distance
Measure between two tied states as described in [7].

Fig.2: The relationship between tied-state triphones of PCPM
and baseform model in acoustic model reconstruction

Determined by the minimum distance between tied states,
leaf nodes of auxili ary decision trees are merged into the relevant
nodes of standard decision trees as shown in Fig.3. According to
this tree merging, the pre-trained baseform models are
reconstructed and include Gaussian mixtures from its own as
well as from the PCPMs to represent pronunciation variations.
For example, in Fig.3, the leaf node, i.e., tied state ‘ST_4_3’  of
the standard decision tree includes the nodes from different
auxili ary decision trees in order to model different pronunciation
changes, e.g., fb →  and pb → .

Fig.3: Auxili ary decision trees are merged into a standard
decision tree

In this approach, different types of pronunciation changes
are represented using different PCPMs and auxili ary decision
trees. One auxili ary decision tree cannot be used by two different
standard decision trees, so no model confusion is introduced.
Using the Gaussians from PCPMs enables the reconstructed
model to acquire the abilit y from PCPMs to model
pronunciation variations. That is, without introducing the model
confusion, the model resolution is improved.

4. RECOGNITION EXPERIMENTS

The acoustic training set consists of 10 hours of speech (10,483
utterances) selected from the first two CDs in the 1997 MBN
corpus. The testing set consists of two parts: the first one
(test_set1) includes 865 spontaneous utterances consisted of
11512 syllables in total. The second one (test_set2) is 1263 clean
utterances (F0 condition) from the Hub4NE evaluation sets

convent ional  t ree b[4]auxi l iary t ree b_f [4]

auxi l iary t ree b_p[4]

b_f b_d b_g

brelated to which
node?

related to which
node?

Context-dependent triphone PCPM

Context-dependent triphone baseform

I - 762

➡ ➡



[2,3], consists of 15535 syllables in total. HTK toolkit is used to
train triphone models. The HMM topology is three-states, left-
to-right without skips. The acoustic features are MFCC13 ,

MFCC∆13  and MFCC∆∆13 . The HTK flat-start procedure
is used to build the 10 Gaussians model, state clustered HMMs
with 2904 states.

415 toneless standard Chinese syllables are used in the
experiments. 145 context-independent PCPMs are generated
through DP alignment between the baseform and surface
transcriptions in the training set. Using the decision tree based
state-tying approach [7], 818 tied-states are generated for
auxili ary decision trees of PCPM triphones. Through decision
tree merging, the reconstructed acoustic model includes 37,220
((2904+818)*10) Gaussians and each state has 12.8 Gaussians
on average. Compared with the baseline model of 29040
Gaussians, this only gives a 28.2% increase in parameter size.
Note that in SLPM discussed in [5], when two set of models are
merged, the number of Gaussians is nearly doubled. In order to
make a fair comparison, we generate an enhanced HMM which
has 13 Gaussians per state. For SLPM system, each state has
13.1 Gaussians on average. The recognition performance is
listed in Table 1.

Syllable Error Rate (SER) %
system Test_set1 Test_set2

Baseline 42.23 30.92
Baseline HMMs &

pronunciation dictionary
41.66 30.64

Enhanced HMMs 41.57 30.47
SLPM 41.29 30.05

Triphone model
reconstruction using PCPMs

39.84 29.68

Table 1: Using triphone model reconstruction outperforms other
pronunciation modeling approaches

In the second system described in Table.1, the
pronunciation dictionary is established on our previous work
[2,3]. It has been shown that only a very limited improvement is
obtained by using multiple pronunciations. Note that
pronunciation model technique shown here can only model
complete changes but not partial changes. A comparison of the
recognition performance of using triphone model reconstruction
with baseline and SLPM by Gaussian mixture sharing discussed
in [5] is presented in the last three rows. It shows that using the
reconstructed models yields a significant 2.39% absolute
improvement in SER on test_set1 compared with the baseline,
and 1.73% with respect to using the enhanced HMMs.
Furthermore, it gives an additional 1.45% absolute SER
reduction in spontaneous speech compared with that of SLPM.
The higher eff iciency of pronunciation modeling through
acoustic model reconstruction lies in the fact that (1) PCPMs can
eff iciently differentiate pronunciation changes at the model
level; (2) no model confusion is introduced during acoustic
model reconstruction by auxili ary decision tree merging.

The results in Table.1 shows that simply increasing the
Gaussian numbers per state does not help much in terms of SER
reduction, since some of the Gaussians are poorly estimated as
the number of Gaussians increased. However, in our proposed

method, the reconstructed model includes the Gaussians from
PCPMs, which enable the “borrowed” Gaussians to cover the
boundaries of the original probabilit y distribution. More
Gaussians in this region make it possible to model in detailed
distributions. Fig.4 ill ustrates that the output distribution of the
reconstructed model at the boundary, e.g., between 10−  and

5− , is more robust than that of the baseline model.

Fig.4: Reconstructed triphone model covers a wide Gaussian
distribution compared with simply increasing Gaussian numbers

5. CONCLUSION

We have described an approach of triphone model
reconstruction for modeling pronunciation variations. In order to
improve the resolution of the reconstructed model, we propose
PCPMs to differentiate pronunciation changes and merge them
into the pre-trained baseform model. In addition, we generate
auxili ary decision trees for triphone PCPMs, and use decision
tree merging to perform acoustic model reconstruction. One
auxili ary decision tree can only be used by one standard decision
tree during model reconstruction, so no model confusion is
introduced. It has been shown that this new pronunciation
modeling approach provides a significant 2.39% absolute SER
reduction for spontaneous speech. Our method is applied to
spontaneous Mandarin speech but can be easily extended to
other languages.
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