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ABSTRACT

The high error rate of recognition acaragy in sportaneous
speedt isduein part to the poar modeling of pronurciations. In
this paper, we propcse modeling pronurciation variations
through triphore model recnstruction. We first generate partial
change phore model (PCPM) to dfferentiate pronurciation
variations. In order to improve the resolution d triphore models,
PCPM is used as a hidden model and merged into the pre-trained
aoustic model through model reconstruction. To avoid model
confusion, auxiliary dedsion trees are established for triphore
PCPMs. The awoustic model rewmnstruction on triphores is
equivalent to dedsion tree merging. The dfediveness of this
approad is evaluated onthe 1997Hub4NE Mandarin Broadcast
News Corpus (1997 MBN) with dfferent styles of speed. It
gives asignificant 2.39% absolute syllable aror rate reductionin
sportaneous eed.

1. INTRODUCTION

An anaysis of pronurciation variations at the aoustic level
reveds that pronurciation variations include both complete
changes and partial changes [2,4,6]. Complete dhanges are the
replacanent of a canoricd phoreme by ancther aternative
phore, such as ‘b’ being pronourced as ‘p’. Partial changes are
variations within the phoreme axd include nasdizaion,
centralization, voicdess voiced, etc. Most of the aurrent work in
pronurciation modeling attempts to represent pronurciation
variations either by aternative phoretic representations or by the
concaenation d subphore units at the state level [1,3,5]. This
approach can orly model complete changes but not partia
changes. It has been shown that partial changes are very flexible
and a lot less clea-cut than previously asaumed and canna be
modeled by mere representation in alternate or concaenation o
phore units[2,5].

Recantly, state level pronurciation modeling (SLPM) has
been proposed to model partia changes [5,6]. However, there
are dtill challenges and the improvement coming from this
approach is limited. Current SLPM scheme uses the same
phoreme unit inventory to represent partia changes. This
approach may introduce model confusion. For example, based
on SLPM, the modified HMM for ‘b’ utilizes the output
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densities of ‘d’, while the modified HMM for ‘d’ may also
utilize the output densities of ‘b’ due to their pronurciation
variations. If the variation probability between ‘b’ and ‘d’, ‘d’
and ‘b’ is close, the mnfusion between the modified HMMs ‘b’
and ‘d isincreased. In ather words, athough SLPM improves
the resolution d the aoustic modd, it may introduce more
model confusion. Moreover, the improvement from SLPM is
based on augmenting the Gaussan mixture number of HMMs,
which inflates the number of parameters and costs more
computation time for training and decoding.

In this paper, we propcse modeling pronurciation
variations through triphore model remnstruction. Partial change
phore model (PCPM) is first generated to represent the aoustic
redizations between the caoncd and dternative
pronurtiations. Instead of phore models, PCPMs are establi shed
from the samples obtained through the dignment between the
baseform and surface transcriptions. Furthermore, in order to
improve the resolution d the remnstructed triphore models,
PCPM is treded as a hidden model and merged with relevant
pre-trained acoustic model through dedsion tree merging. One
auxili ary dedsion treeonly maps to ore standard dedsion treeof
the pre-trained triphore models. Hence, compared to SLPM, the
model resolution is improved to capture pronurciation
variations, while no model confusion is introduced. Only the
parameter size of the reconstructed model has a small inflation.
Compared with phore level pronurciation modeling methods
[1,3], our amustic level approach models pronurciation
variations with a higher resolution.

The paper is organized as follows. Sedion 2 describes the
motivation and the medhanism of generating PCPMs. Sedion 3
describes the method d aomustic model recnstruction through
dedsion tree merging on triphores. In sedion 4 experimental
results on the 1997 MBN corpus are described. Finally, we
concludein sedion &

2. PARTIAL CHANGE PHONE MODELS
2.1. Motivation of Using PCPM s

Sportaneous Mandarin speed includes both complete danges
and partia changes. For example, Chinese initids are very
flexible and around 30% of the variations are partial changes [4].
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When partiad changes occur, a phore is not completely
substituted, deleted or inserted. Therefore, the transcriber
agreament on sportaneous eed is much lower than that on
read speed. An analysis of phore level transcriptions of a
sportaneous Mandarin speed corpus — CASS corpus [4] shows
that the average transcriber agreement is 84.23%. Whereas the
agreament on areal speed corpus — 863 corpus, is around 984.
The different transcriber agreement rate suggests that when
partial changes occur, the transcribers who are forced to use a
caegoricd label from the limited phoretic inventory may end up
choaosing different labels for phore level representation. That is,
given a mntinuows amustic signal whaose relevant pronurciation
is different from the canonicd pronurciation, it is very difficult
even for phoreticians to clealy identify the exad pronurciation
changes.

Pronurciation variations can be represented at different
levels. If the variation is large enough and can be identified at
the phore level as represented by ancther phore, then
pronurciation modeling can be used at the phore level [1,3] to
handle this variation. If the variationis snall enough, then using
more Gausdans within the aoustic modd [5] can solve this
problem. However, if the variationis at an intermediate level, the
above @proaches canna differentiste and ded with this
deviation. Therefore, a more powerful model is required to
acourt for the anbiguity of acustic representations caused by
partial changes. The aoustic model for sportaneous Peed
shoud be different from that of real speed — it shoud have a
strong ability to cover partial changes as well as complete
changes.

2.2. Representation of PCPM s

In this ®dion, we start from the recognition formulae and
deduce the representations of PCPMs. In current ASR systems,
the deaoding formulais

B' =argmaxP(B)P(X |B) )

where B is the baseform sequence in terms of phoreme
representations, and X is the input speed vedors. If words are
aways pronourced in the same way, there would be no reed to
consider pronurciation variations. The demding would be
relatively easy as shown in Eq.1. However, since pronurciations
are dways different in pradicd sportaneous eed, Eq.1 neals
to be rewritten by taking pronurciation variations into
consideration. Suppcse aword can be pronourced in several
alternative ways, and asauming S is one possble sequence of a
pronurciation, the surface form, in terms of phore
representations, the deader formula becomes

B = arggnaxﬁ?(B)g P(X |B,S)P(S| B)E @)

where P(B) is the language model, P(X |B,S) is the aoustic
model, and P(S|B) is the pronurciation model. In genera, the
aoustic model training procedures assumes that

P(X |B,S)=P(X |B) ©)

It means that the aoustic model is trained using baseform
transcriptions. If surface form transcriptions are available, the
aoustic model training can be expressed as

P(X |B,S)=P(X|9) 4

Obviously, both P(X |B) and P(X |S) are sub-optimal
aoustic models if pronurciation variations are mnsidered. In
fad, estimating acoustic model either from the baseform or from
the surfaceform transcriptions is an approximation. ldedly, both
the baseform and surfaceform shoud be taken into aceurt for
aoustic model estimation. In Eq.2, P(X | B, S) is cdled the

partial change phone model (PCPM).

Compared with the conventional predefined phore symbad,
PCPM is represented using the phoreme/phore pair which is
automaticdly generated from the baseform and surface form
aignment. If the phoreme in the baseform has a different phore
representation in the surfaceform, this phoreme and phore will
be mbined to form a phoreme/phore par for PCPM
representation. PCPMs can be mnsidered as an extended model
set in regard to the wnventional phore model set. For example,
the baseform modd is ‘b’ anditsrelated PCPMs could be‘b_gg,
‘b f and ‘b_d due to dfferent types of pronurciation
variations.

2.3. Acoustics Represented by PCPM s

In order to investigate the charaderistics of PCPMs, we anadyze
the aoustic feaures represented by PCPMs. Suppce ‘b, ‘d’
and ‘b_d are the baseform, surface form and PCPM
representation, respedively. The aoustic redizaion for ‘b_d is
the aoustic samples which are labeled as ‘b’ in the baseform but
transcribed as ‘d’ in the surfaceform. For ‘b’, it is the aoustic
samples which are labeled ‘b’ bath in the baseform and surface
form. Similarly, acmustic redizaion for ‘d’ can be determined.
We first cdculate the global mean p, and p, for the aoustic
samples of ‘b’ and ‘d’, then plot the aoustic redizaion o ‘b_d
acwording to its relative distanceto 4, and iy in anormalized

amustic space In this ace the mean dstance between L, and
Uy isnormalized to 1

05

0

Fig.1: Acoustic redizaion d a PCPM ‘b_d in a normalized
aoustic space

In Fig.1, the x-axis and y-axis are Y, and [, the
coordinates of the paints in this normalized acmustic space ae
the relative distance of amustic redizaion o ‘b_d to u, and
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Uy . It has been shown that the points representing the aoustic

redizations of PCPM ‘b_d fal mostly within the aeabetween
(0,0) and (1,1). This means that the aoustics of a phoreme, e.g.,
‘b’ when redized as a phore, eg., ‘d’, lies between the average
redizaion d the phoreme and the average redizaion o the
phore. Neither the phoreme nor the phore unit can acarately
represent this type of variation. However, during the generation
of PCPMs, bath the baseform and surfaceform representations
are taken into acourt. PCPMs, eg., ‘b_d can be dficiently
used to model the a@ustic redizdions at the intermediate level.
In addition, using PCPM is easy to dfferentiate pronurciation
variations. Acoustic samples belonging to ‘b_d are different
from those of ‘d_B since the tendency of pronurtiation
variation from ‘b’ to ‘d’ is different from that of ‘d’ to ‘b’. Now
we will discusshow to use PCPMs.

3. ACOUSTIC MODEL RECONSTRUCTION

Previously, we have shown that increasing the phore model set
to model pronurctiation variations gives no significant
improvement [2]. In this work, we propcse using PCPM as a
hidden model and merging them into the pre-trained baseform
model to improve the model’s resolution. This approach aims at
making the pre-trained model acuire the aility from PCPMs to
acommodate pronurtiation variations.

3.1. Generating Auxiliary Decision Treesfor PCPM s

Current ASR systems always use antext-dependent triphore
model. In order to limit the complexity of triphore models and
avoid the sparse data problem in acoustic modd training,
dedsion treebased state dustering is commonly used [7]. In ou
system, triphores for PCPM are similar to conventional
triphores except for the central phore. The former is a phore
pair and the latter is a phoreme or phore. The trees for PCPMs
are cdled auxiliary decision trees, while trees for standard
triphore models are cdl ed standard decision trees. The structure
of auxiliary dedsion treesis smilar to that of standard dedsion
trees. However, auxili ary dedsion trees are only used duing the
state-tying procedure for PCPM triphore models, while nat used
in the aoustic model estimation and ceading. This is becaise
ead led node of dedsion treerepresents a tied-state, and after
aoustic model reconstruction, auxiliary dedsion trees will be
merged into standard dedsion trees and will not appea in the
foll owing steps.

3.2. Triphone Model Reconstruction through Decision
TreeMerging

Acoustic model reanstruction d the triphore model is more
complicaed than that of the monophor® model. The triphore
variants of the same cantral phore have several alternatives, the
relation between baseform triphore models and PCPMs is many-
to-many as siown in Fig.2.

Since the led node of dedsion tree represents a tied-state
triphore unit in treebased state tying system, therefore, acoustic
model remnstruction equals to tree merging between auxili ary
dedsion trees and standard dedsion trees. The mapping nodes
between auxiliary trees and the relevant standard tree ca be

determined acording to the Minimum Gaussan Distance
Measure between two tied states as described in [7].

Context-dependent triphone PCPM

related to which .

node? ) .
. related to which
4 R node?

Y.

Context-dependent triphone baseform

Fig.2: The relationship between tied-state triphores of PCPM
and hkeseform model in amustic model recnstruction

Determined by the minimum distance between tied states,
led nodes of auxili ary dedsion trees are merged into the relevant
nodes of standard dedsion trees as own in Fig.3. According to
this tree merging, the pretrained baseform nodels are
reconstructed and include Gausdan mixtures from its own as
well as from the PCPMs to represent pronurciation variations.
For example, in Fig.3, the led node, i.e, tied state ‘'ST_4_3 of
the standard dedsion tree includes the nodes from different
auxiliary dedsiontreesin order to model different pronurciation
changes,eg.,. b - f andb - p.

auxiliary tree b_f[4]

conventional tree b[4]

auxiliary tree b_p[4]

T pe
ASIPA2

Fig.3: Auxiliary dedsion trees are merged into a standard
dedsiontree

In this approacd, different types of pronurtiation changes
are represented using different PCPMs and auxiliary dedsion
trees. One auxili ary dedsiontree canad be used by two dfferent
standard dedsion trees, so no model confusion is introduced.
Using the Gaussans from PCPMs enables the recmnstructed
model to aaquire the &ility from PCPMs to mode
pronurciation variations. That is, without introducing the model
confusion, the model resolutionisimproved.

4. RECOGNITION EXPERIMENTS

The aoustic training set consists of 10 hous of speed (10,483
utterances) seleded from the first two CDs in the 1997 MBN
corpus. The testing set consists of two parts: the first one
(test_setl) includes 865 sportaneous utterances consisted of
11512syllablesin total. The seaond ore (test_set?) is 1263clean
utterances (FO condtion) from the Hub4NE evaluation sets
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[2,3], consists of 15535syllablesin total. HTK toalkit is used to
train triphore models. The HMM topdogy is threestates, left-
to-right withou skips. The amustic feaures are 13MIFCC,
13AMFCC and 13AAMFCC . The HTK flat-start procedure
is used to buld the 10 Gaussans modd, state dustered HMMs
with 2904states.

415 toneless sandard Chinese syllables are used in the
experiments. 145 context-independent PCPMs are generated
through DP aignment between the baseform and surface
transcriptions in the training set. Using the dedsion tree based
state-tying approach [7], 818 tied-states are generated for
auxiliary dedsion trees of PCPM triphores. Through dedsion
tree merging, the reconstructed amustic model includes 37,220
((2904+818*10) Gausdans and ead state has 12.8 Gausdans
on average. Compared with the baseline model of 29040
Gausdans, this only gives a 28.2% increase in parameter size
Note that in SLPM discussd in [5], when two set of models are
merged, the number of Gausdans is nealy doulded. In order to
make afair comparison, we generate a enhanced HMM which
has 13 Gausdans per state. For SLPM system, ead state has
131 Gausdans on average. The recognition performance is
listedin Table 1.

Syllable Error Rate (SER) %

system Test _setl Test_set2
Baseline 42.23 30.92
BasdineHMM s & 41.66 30.64

pronurtiation dctionary
Enhanced HMM s 4157 30.47
SLPM 4129 30.05
Triphore model 39.84 29.68
reconstruction wising PCPMs

Table 1: Using triphore model reconstruction ouperforms other
pronurtiation modeling approaches

In the seomond system described in Tablel, the
pronurtiation dctionary is established on ou previous work
[2,3]. It has been shown that only a very limited improvement is
obtained by using multiple pronurciations. Note that
pronurtiation model technique shown here can oy model
complete changes but not partial changes. A comparison d the
recognition performance of using triphore model remnstruction
with baseline and SLPM by Gausgan mixture sharing discussed
in [5] is presented in the last threerows. It shows that using the
reonstructed models yields a significant 2.39% absolute
improvement in SER on test_setl compared with the baseline,
and 173% with respead to using the enhanced HMMs.
Furthermore, it gives an addtiona 1.45% absolute SER
reduction in sportaneous geet compared with that of SLPM.
The higher efficiency of pronurciation modeling through
amustic modd remnstruction liesin the fad that (1) PCPMs can
efficiently differentiate pronurciation changes at the model
level; (2) no model confusion is introduced duing amustic
model reconstruction by auxili ary dedsion treemerging.

The results in Table.1 shows that simply increasing the
Gausdgan numbers per state does not help much in terms of SER
reduction, since some of the Gaussans are poaly estimated as
the number of Gausdans increased. However, in ou propocsed

method, the recnstructed model includes the Gaussans from
PCPMs, which enable the “borrowed” Gausdans to cover the
boundries of the origina probability distribution. More
Gausdans in this region make it possble to model in detail ed
distributions. Fig.4 ill ustrates that the output distribution d the
reconstructed model at the boundry, eg., between —10 and
-5, ismore robust than that of the baseline modd.

'p- " wi i Recon ‘p-ia+h’
PC,) p-ia+b" with more Gaussians P(C,) econstructed 'p-ia+h

035

0

) C,
Fig.4: Remnstructed triphore moddl covers a wide Gaussan
distribution compared with simply increasing Gaussan nunbers

5. CONCLUSION

We have described an approach o triphore mode
reconstruction for modeling pronurciation variations. In order to
improve the resolution o the reconstructed model, we propose
PCPMs to dfferentiate pronurciation changes and merge them
into the pre-trained baseform model. In addition, we generate
auxiliary dedsion trees for triphore PCPMs, and wse dedsion
tree merging to perform amustic model remnstruction. One
auxili ary dedsion tree ca orly be used by one standard dedsion
tree during model reoonstruction, so no model confusion is
introduwced. It has been shown that this new pronurciation
modeling approadch provides a significant 2.3%% absolute SER
reduction for sportaneous geed. Our method is applied to
sportaneous Mandarin speet bu can be eaily extended to
other languages.
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