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ABSTRACT

Polynomial Segment Model (PSM), which wasfirst proposedin[1]
and subsequently studied by other researchers [9] [8], has opened
up an dternative research direction for speech recognition. In
PSM, speech frames within a segment are jointly modeled such
that any change in the boundaries of a segment would require the
re-computation of the likelihood of al the frames within the seg-
ment. While estimation of the best segment boundaries are pos-
sible, the computation consideration typically constrains the PSM
model to limit the search to center around some pre-segmentation
typically obtained by using another model such as an HMM, in
effect limiting the possibility of using PSM itself. In this paper
we introduce a new approach to evaluate the likelihood of a PSM
segment by efficiently “accumulating” segment likelihood incre-
mentally, i.e. one frame at atime. Based on this incremental like-
lihood evaluation, an efficient PSM search and training algorithm
are also introduced. We show the effectiveness of the incremental
likelihood evaluation by building a PSM-based TIMIT recognition
system (both training and test) without the need of using another
model for pre-segmentation.

1. INTRODUCTION

While HMM isthe most common representation for speech acous-
tics, the segmental models [2][3][?][4] have been pursued as alter-
nativesthat can better model the speech dynamics and thetime cor-
relations between speech frames. The polynomia segment model
(PSM), first proposed by [1] as the polynomial trajectory model,
represents the speech dynamics of a variable duration speech seg-
ment as a polynomial function. Previous works [1][?] have re-
ported itssuperior performance as compared to using HMMs. Like
other segmental models, in PSM, the likelihood of a segment is
the joint likelihood of al the frames within it. Thus any change
to the boundaries of a segment requires the re-computation of the
likelihoods of all its frames which is computationally intensive.
Because the computation required to search for the optimal seg-
ment boundaries is high, more limited searching methods, such as
searching within a window of an HMM-generated segmentation
or the use of the N-best re-scoring [5] techniques, are commonly
used. Similarly, PSMs are often trained with pre-segmented data,
either hand-segmented (asin the TIMIT corpus) or segmented us-
ing an HMM-based recognizer. These constraints make it difficult
to build a self-contained PSM-based system and thus limits the
potential use of PSM.
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In this paper, we propose an efficient, incremental agorithm
for computing the likelihood of aPSM segment such that the likeli-
hood of alength NV segment can be computed recursively from the
likelihood of thelength IV — 1 segment. Based on thisincremental
evaluation agorithm, efficient PSM search and training algorithms
are proposed such that they do not reguire pre-segmentation by an
HMM making the PSM system self-contained. In Section 2, we
summarize the PSM formulation as described in [1]. Section 3 de-
scribes the proposed efficient incremental algorithm for comput-
ing the PSM segment likelihoods. In Section 4, we describe our
PSM recognition and training algorithms. Preliminary experimen-
tal results are reported in Section 5 and we conclude the paper in
Section 6.

2. POLYNOMIAL SEGMENT MODEL

Denote an N, -frame speech segment, C7+ tYe~! = (¢[ni], . .., c[mn+

N, — 1]), which starts at 7, and ends a 7. + Ny — 1. Each
framein C7F "~ 'is represented by a D dimensional vector, an
(R—1)-thorder PSM isgiven by C7**™e~! = 7, B, + B, where
C7tNelisa Ny x D observation matrix, By is the trajectory
parameter matrix of dimension R x D, Z; isa N x R design
matrix for time normalization and E is the residue error. For a

quadratic (R=3) PSM, Z,. isgiven by

1 0 0
2
1 1
L s (Nk—l)
2
— 2 2
Zi= | 1w (wi)
1 1 1

Zy, normalizes the segment length uniformly to one.

2.1. PSM Parameter Estimation

The maximum likelihood estimate of the trgjectory parameter ma-
trix of C7 T+ is given by
By = [Z,;Zk.]_l Z, et
The corresponding residue error covariance, Xy, is given by
5, = EEy, _ (CoFM T — By (CTE T ZrBr)
Ny, Ny,

Thetriplet, { By, Xk, Nk }, can be viewed as the sufficient statis-
tics for the C7*T™«~'. For aset of K segments from model m,
denoted as § = {Cr+Mi=t . C7EFTNKT1Y ] the maximum
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likelihood estimate of the PSM parameter for model m, B,,., and
residue covariance, 3., are given by

A 7 71 !
By = [ij:l Zkzk] [ij:l ZkaBk] ,
and N, 1 B N, 1 "
& _ oKL OR 5By €M T 5B
mw SR N ’
k=1

2.2. Log Likelihood Evaluation

Thelikelihood of asegment against amodel can be evaluated using
its sufficient statistics as described in [1]. On the other hand, be-
cause a PSM represents the time-varying mean trajectory, the log

likelihood of C7 ™+~ against model m, L, (C7t 7! | By, $im),

can aso be evaluated one frame at atime and is given by

T, — " - N &
Ln (O3 1B £) = Y [Dlog(2m) +10g 1S @)
—%tr[(c::”k—l — ZuB)En (O 2B

To simplify our notation, wewill drop the dependence on B, S,
anduse NV instead of Ny, L instead of L, (C7- V"1 B,,, £,,).
Furthermore, we will assume 7, = 1. For aquadratic PSM, by ex-
pressing B, = [132/3:]',, we can re-write the log likelihood as

Ly = —%[D log(2) + log [ S]] %)
172 Y AICH B — (i) — o))

xS [ClI) - B1 = Ba( i) — Ba( )T}

While this re-written equation is not as compact as the matrix
equation in Eqgn 1, it highlights the exact dependence of the Ly
on N; through the ( N;:—l) terms and is useful for deriving the
incremental likelihood evaluation algorithm.

3. INCREMENTAL COMPUTATION OF SEGMENT
LIKELIHOOD

In Equation 2, We noticethat the Ly isdependent on IV, primarily
through the (=) terms,

When one frame is appended to the segment C, denoted as
Ci1[N + 1] whichis N + 1 frames long, the evaluation of Ly 41
will require the re-evaluation of C[1],..., C[N] because of the
changesin time normalization. That is, Ly isnot re-used. |deally,
we would like to re-write

Lyi1 =q(C[N +1,N+ 1)Ly +r(C[N +1,N+1) (3)

whereg(C[N +1], N +1) and r(C[N + 1], N + 1) arefunctions
that only depend on C[V + 1], and N + 1. In this form, the log
likelihood can be computed recursively. Whilewe areunableto re-
write Ly 41 intheform of Egn 3, we can rewrite Ly = ), wy, v
such that each term w;, x can be recursively computed in a similar
form asin Eqn 3. The detail derivation for the quadratic PSM is
shown and we then discuss how this can be generalized for higher
order PSM.

3.1. Incremental Computation for Quadratic PSM

In Equation 2, we express the log likelihood of a quadratic poly-
nomial trgjectory in terms of b, ; and (ﬁ). This can be fur-
ther expanded by multiplying out the quadratic term into the cross
products of the parameters and the observations. Although the ex-
panded equation is more complicated, it allows us to separate the
terms that are dependent on the observations from those that only
depend on the model. The log likelihood of the segment, Ly, can
now be written as,

Ly = —¥[Dlog(2m) + log [S1n]]

— 125NNl - m‘*l(cm—ﬂl)'

—2(C[i] - B1)Sm ﬂz( L) —2(Cli] — B1)Em 85 (5g)”
+ BoSnt B (i)’ +2/332m1/32'(N_1)3

+ B3Sm1 B (i) ]

= Kn+Anx+By+Dny+Enx+ Fy+ Gy

Itis easy to see that the termsin the above formulation can be
recursively computed using the following equations:

Ky = 2(Dlog(2r)+10g‘2mn
Av = 3 25N (Cl] - B1)ERN (CL] — Br)
= Ay-1-3(CIN = 1] = B1)SR (CIN = 1] - p1)’,
By = -3 il (-2)(Cl - BER' B2 ()
_ BN—1(%)+(C[N71] B1 )2;11,32’:
Dy = —ESNG2)(Cl] — p)SR B ()
= Dy + (CIN = 1] = )84,
En = —3BIn'g SN 51)2
= wal(%:f)Q_% 25m! B
Fy = —BEn'8 YN (75 ’
= FN—1(%)3*522511’631’
Gy = =335 6y Ef\;ﬁl(zvi—1)4

= GN (3= f) — 183588

In the above formulation, because al theterms Ay, By ..., Kn
can berecursively computed, itisobviousthat Ly, being asum of
them, can a so berecursively computed. Becauseterms Ay, By, Dy
are dependent on the observations, they have to be accumulated
during the recognition process. For a 2-nd order PSM, accumul at-
ing these three terms may at the worst case increase the memory
usage three times. With techniques such as caching, real storage
can be smaller. Theterms Ky, En, Fn,G N are independent of
the observations and thus can be pre-computed. Ky, En, Fn,Gn
can either be pre-computed for each model and IV or, by separately
pre-computing the cross products of 3;3;,! B; for al ¢ and j as

well asthe "V 5! ()" fordl kand N, the K, Ex, F, G
terms can be computed directly during recognition without recur-
sion. The latter approach is more memory efficient.

3.2. Extension to Higher Order Polynomial

Extending the above formulation to higher order is quite straight-
forward. For an k-th order PSM, there are K + 1 (3 for quadratic)
terms that depend on the observations and have to be accumulated
during recognition. In addition, thereare 2K — 1 (3 for quadratic)
terms that are products of the PSM parameters 3,35, B; and the
powers of the (ﬁ), plus one term for the determinant of the
covariance. These terms can be pre-computed as discussed in the
quadratic case above.
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Fig. 1. A state-representation of the segment model

4. PSM RECOGNITION

While the incremental likelihood evaluation significantly reduce
the computation in evaluating the segment likelihoods with the
same starting points, to find the best segment path, we still need
to consider al possible starting points for al phonetic units. In
this section, we will first introduce one solution that makes use
of theincremental likelihood computation to find the optimal path
though it is computationally expensive. Then, we will formulate
an approximation that is more computationally efficient.

Denote O = o1,...,or asthe observations of a sequence
of phonetic segments SV = sf)l, .. .,si%_l wherety, ..., ty are

the segment end times. The search will find SV such that
(8N) = arg max gy pPOT,sM).

We use capital “I,J’ to denote index for phonetic units.

Let's consider a dynamic programming solution for finding
SN . Define the quantity ¢; (¢, m) to be the log likelihood of the
best path up to time ¢ and s, = I, (i.e the last segment starts at
time m and ends at time ¢ is of model I). The path metric, ¢5(t),
which is the log likelihood of the best path up to time ¢ with the
last segment is from model .J can be computed as

¢s(t) = maxgd;(t,m). (@)

If a segment begins at time ¢, the path metric depends on the pre-
vious phonetic units and is given by,

¢u(t,t) = max[pr(t — 1) +log ars] + L(Of]J),

where a ;s isthetransition probability of going from model I to J.
For other segment begins (m < t), it can be extended from shorter
segments.

Gs(t,m) = ¢s(t —1,m)+65(Olsiy ) (5

where

87 (Olsit) = L(O},|T) = L(O5 | T)
is the likelihood change when extending the segment £, ' (ends
att — 1) to s, (endsat t) which can be computed using the incre-
mental likelihood evaluation described in Section 3,

The above equations can be represented by a state transition
diagram as shown in Figure 1 similar to an HMM except that the
transition costs are time-varying and dependent on the value stored
in the states. An enter-state and an exit-state encompass a number
of internal states. Let's index the states by case “i,j”. The enter-
state and exit states are similar to the null-nodesin an HMM. Each
internal state represents a particular segment starting time m; (¢).
For a segment of phonetic unit .J, the transition arcs into the enter-
state have the costs of inter-unit costs log avr,;. The transition
costs between the states going to the ¢-th frame is given by:

if 4 = enter-state

L(Of].7)
ai;jt)=¢ 0 if j = exit-state
6J(Ot|sfn_il(t71)) otherwise

N S Sy

S o—

Fig. 2. A 5-state segment model with exit arcs

Because the connections between internal states and the exit state
are null-arc ¢, there is no transition cost for going to the exit-state.
Based on this state representation, we can apply an Viterbi-like al-
gorithm using ¢; (t, m;(t)) as the the path metric. At each time
instance, we need to update the starting time m; (¢), the path met-
ric ¢;(t,m;(t)) aswell asintroducing atrace-back pointer, v; (t).

While in Figure 1, each internal state has only one incoming
arc, it is more genera to assume that it can have more than one
incoming arc which is the case for the exit-state. The updates of
the internal states are given by

¥;(t)
m;(t)
¢ (t,m; (1))

argmax [¢i(t — 1,m;(t — 1)) + ey ()],

My 1) (t = 1),
max ¢;(t — 1,m;(t — 1)) + oy (t).

The updates for the enter-state and exit-state are slightly dif-
ferent because the arcs going into these nodes are null-arcs that do
not generate any observations but can be similarly derived. Fur-
thermore, the initialization and termination are similar to that of a
HMM.

If we use avery large number (upto the maximum number of
frame per phone) of internal states, an optimal search is achieved.
In the next section, we discuss how to modify the segment topol-
ogy by using a smaller number of states.

4.1. Efficient Recognition Algorithm

In the above formulation, we need to keep alarge number of states
to represent all possible starting points for an optimal search. In-
stead, we can approximate the above state diagram by introducing
self-loops in the states to reduce the number of states. In addi-
tion, we can include duration model probabilities in the transition
arcs. In Figure 2, we showed a 5-state PSM that connects from
state 3, 4 and 5 to the exit-state. Thisimposes a minimum segment
duration of 3 frames while keeping 5 different segment starting
times. While the structure of the segment model is now changed,
the above algorithm and formulation are still valid. Whilethe num-
ber of starting times are reduced, the maximal duration per phone
is not restricted. Other topologies are also possible. By varying
the number of states, we can trade-off modeling accuracy against
speed and the experimental results will be discussed in the Sec-
tion 5.

There is a small problem in the above approximation is that
multiple states of the same segment may al have the same seg-
ment starting point. To avoid this and with minimal modification
to the above algorithm, we can explicitly require the states of the
same segment to keep paths with different segment starting points.
As reported in [1], duration modeling has been shown to enhance
segmental modeling performance. There are a number of ways to
incorporate duration model information. Denote the probability of
alength k& segment of model .J asps (k). One approach isto apply
the duration probability after a segment ended (and not extended)
by adding it to the in-arcs of the exit state. In this approach, the
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transition cost of ending a segment after time ¢ is given by:
ai,exit(t) =logps((t) — mi(t) + 1),

wheret — m;(t) + 1 isthe duration of the ended segment at time
t. The duration probability can also be computed during segment
extension. In this approach, the transition cost, «; (¢), of append-
ing the ¢-th frame to a segment during a transition from state i to 5
is given by
ps(t—mi(t—1)+1)

pr((t—1) —mi(t—1) +1)
The second approach has the advantage that the duration model
information is being considered earlier during segment extension.

Qi (t) = 5i(0t‘5t_,1(t_1)) + log

m’l.

4.2. Training of PSM

The establishment of the PSM as a state representation in Fig-
ure 2 makes it possible to train PSM models by itself without pre-
segmented data. The use of PSM training has an advantage that
the segment alignments are consistent with that during test. While
both the E-M algorithm and Viterbi training can be performed, the
Viterbi training can greatly simplify the training implementation.
For the resultsreported in the next section we used Viterbi training.

5. EXPERIMENTS

We performed two sets of experiments mainly to demonstrate the
effectiveness of the incremental algorithm. All PSM experiments
were performed using solely the PSM without any HMM model
alignments or N-best re-scoring. The domain we focused on is
phone recognition on the TIMIT corpus.

In our first set of experiment, we focused mainly on the rela-
tive speed of the recognition and the effect of varying the number
of states. Our PSM model consisted of a single trgjectory of sec-
ond order (quadratic) with constant-time covariance and only 13
dimensional Mel-frequency cepstral coefficients (MFCC) with no
derivative coefficients or advance techniques such as multiple mix-
tures or context-dependent modeling. We use the standard TIMIT
training set and core test set [6] with SX and Sl sentences, using
the phone set in [7] plus three phones [el, en, and dx]. Bigram and
duration modeling were used in this set of experiment. The weight
for grammer, duration modeling and insertion penalty were tuned
empirically. Our baseline system was a single mixture monophone
HMM. The PSMsin this experiment were trained with the Viterbi
style training stated above.

The experiment results are summarized in Table 1. The 1-
state PSM’s result is surprisingly good considering that only one
segment begin-time was kept. The 3-state PSM in the 3rd row isa
left-to-right model with self-loop on each state that enforces mini-
mum duration of 3 frames which isthe same state configuration as
in the HMM. From the result, we can see that the addition of the
number of states doesimprove performance but at arelatively slow
rate. Imposing the constraint that states within the same segment
which must have different frame begin givesasmall gain. Increas-
ing the number of states requires us to alow exit arcs to avoid
creating an unreasonable minimum duration and the performance
has further improved from the 3-state model. With 18 states, this
isalmost searching for all possible segment starting times but this
performance isonly slightly better than the 6-state PSM. The third
column in Table 1 shows the relative computation speed relative to
the HMM. Both the HMM and the PSM search code were not op-
timized and the numbers illustrate that the possibility of searching

Experiment Phone Accuracy% | Speed
HMM 45.64 1
1-state 44.82 171
3-state 45.81 3.50
3-state w/ diff seg. starts 46.03 3.50
6-state w/ exit-arc 46.13 4.44
18-state w/ exit-arc 46.29 8.66

Table 1. Experimental result using different number of PSM states

solely using PSM iswithin areasonable amount of time. Whilethe
recognition accuracy is not very good because of the small feature
set and lack of mixtures, this nevertheless demonstrated the fea-
sibility of the incremental likelihood evaluation and the proposed
search algorithm

In the second set of experiment, we use the same setting as
before except that delta cepstral coefficients are introduced and
number of state is fixed to 18. Using a single PSM recognition
system, the accuracy is49.2% compared with the 49.8% of 3-state
HMMs. However, the number of parameters in the PSM models
is only about 70% of that of the HMMs. Furthermore, because
PSM is fitting a single trajectory across the phone with a single
variance which is more constrained than an HMM, phonetic varia-
tions across speakers may be harder to capture with asingle model.
The addition of more mixtures should give a better performance.
Training and testing with PSM mixtures is one direction we are
currently pursuing.

6. CONCLUSION

In this paper, we have introduced an innovative approach to evalu-
ate segment likelihood incrementally that makes it possible to per-
form model training and recognition solely using PSM. We aso
proposed an efficient search algorithm for PSM recognition and it
can also be applied for segmental training. While the experiments
reported are not at state-of-the-art performances, they illustrate the
feasibility of building PSM-based system. The incremental algo-
rithm, together with the search algorithm open up more possibili-
tiesfor further development in PSM.
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