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ABSTRACT 

 
Segmenting the acoustic signal in the TIMIT database by 
a switching state Kalman filter model is reported in this 
paper. According to the assumption that the high 
dimensional acoustic feature vector of the LSF (Line 
Spectrum Frequency) of the speech signal is probably 
embedded in a low dimensional space, a two dimensional 
vector is used to represent the continuous state vector in 
this model. The parameters of the model are initialized by 
PPCA (probabilistic principle component analysis) and 
first order vector auto-regression, and are re-estimated by 
the EM algorithm. We show that this model can be used 
to classify vowels, nasals, frication and silence by an 
approximate Viterbi inference. 

 

1. INTRODUCTION 
 
In the conventional speech recognition system, the 
features of the speech signal, for example MFCC, are 
modeled by HMM. The dynamics of the speech signal are 
captured by the movement of the discrete state variable. In 
this model, the dependency among the frames within each 
discrete state is ignored.  
 
The application of a stochastic linear system in speech 
recognition is introduced in [1], where the dimension of 
the continuous space is the same as the dimension of the 
observation space. Comparing to the independent-frame 
HMM, the model in [1] showed a superior performance. 
A more parsimonious, target directed dynamic model is 
reported in [2], where a performance comparable to 
conventional HMM is achieved. A derivation of the EM 
algorithm for the estimation of extended Kalman filter 
(EKF) parameters is reported in [3], and a dual estimation 
method with much better convergence properties is 
proposed.  
 
Although the most appropriate model structure for speech 
recognition is still an open question, it is obvious that 

inter-frame dependence of acoustic observations is caused 
in part by the continuous movement of the tongue, lips 
and other articulators. Research with the articulator data 
[4, 5] indicates that two factors are sufficient to represent 
the steady state of the articulators of the vowels. In this 
paper, we demonstrate that the switching Kalman filter 
model with only a two dimensional vector as the hidden 
continuous state can group the acoustic data into vowels, 
nasals, frication and silence effectively. 
 
 

2. SWITCHING KALMAN FILTER MODEL 
 
The switching state model can be described by the 
following equations: 
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A switching state Kalman filter can be used to model 
piecewise linear dynamic time series.  The equations 
above assume that the discrete switching state  is also a 
first order Markov process.  

ts

 
 
2.1. EM learning of switching Kalman filter 
 
In the learning process, we assume that the status of the 
discrete state is known (i.e. the segmented data is used in 
the training), so only the continuous states and parameters 
of the Kalman filter are estimated. 
 
 In the EM algorithm, sufficient statistics of the hidden 
continuous state are calculated by the Kalman smoother in 
the E step, and the values of the parameters were found by 
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maximizing the lower bound of the likelihood function in 
the M step [6]. 
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and is a)|( TT SXp  2T-dimensional jointly Gaussian 
distribution. 
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The approximate Viterbi inference can be stated as 
follow: 
1. Initialization where N is the number of different training sequences, 
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G is the total number of classes , 
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 2. Recursion 
E step: The sufficient statistics are calculated as follows: 
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3. Termination  

))((minarg* iJs TiT =  M step: The parameter updating formulas are as follows: 
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4. Path backtracking 
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3. EXPERIMENT 
 
We used this switching state Kalman filter to analyze the 
acoustic signals in the TIMIT database. In this 
experiment, the four discrete states are used to represent 
categories of vowels, nasals, frication and silence 
respectively.  
 
The original waveform data is down-sampled to 8 KHz. 
The acoustic features are represented by the coefficients 
of a 10th order LSF (line spectral frequency). The frame 
rate is 10ms with a window size of 20 ms, and a Hamming 
window is used. The reason to choose LSF as the feature 
vector is that the series of LSF coefficients during vowel 
and glides may be modeled by a linear dynamic model 
[8]. The dimension of the hidden continuous state is 2, 
which is supposed to represent the low dimensional 
dynamics embedded in a high dimensional observation 
space. 

2.2. Approximate optimal discrete state sequence 
inference using Viterbi approximation [7] 
 
Given the trained model, the segmentation problem is 
defined as to find the optimal sequence of states , 
where
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In this experiment, the data of 10 female speakers in the 
DR1 of the TRAIN data in TIMIT were used to train the 
model, and 4 other female speakers in the DR1 of the 
TRAIN data were used as the testing set. 

The exact inference of the optimal state sequence is 
intractable, since 
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 The number of frames used in training and testing sets and 
the correctness rate are listed in Table 1. As an illustration 
of the segmentation, a decoding sequence as well the 
ground truth is plotted in Figure 1. And one sample of the 
trajectory of the state space is shown in Figure 2. 

 
3.1. Initialization and learning the parameters of the 
model 
 

 Although EM algorithm is guaranteed to increase the log 
likelihood until convergence, it does not guarantee to find 
the global optimal solution. When starting from a poor 
initial point, the converged solution may be trapped in 
some local maximum which is far away from the optimal 
solution. In our experiment, Cj and Rj are initialized by 
probabilistic PCA [9], and the state matrix Aj and Qj are 
initialized by the first order vector auto-regression, where 
j=1,2,3,4 represent 4 categories or 4 discrete states, and 1 
is the state of vowels, semivowels and glides; 2 is the state 
of nasals; 3 is the state of frication which includes stop 
release and fricative segments, and 4 is the state of the 
silence and stop closure. 

Table 2 is a confusion matrix, showing the percent 
misclassifications of each type.  Nasals are primarily 
misclassified as vowels, while frication and silence 
segments are primarily misclassified as one another. 
 
 

4. CONCLUSION 
In this paper, a switching state Kalman filter model is used to 
segment acoustic signals from TIMIT into four different 
subcategories. The preliminary result shows that this model can 
successfully capture dynamics of the low dimensional manifold 
embedded in the high dimensional feature space (LSF feature 
space). The (frame) classification rate of the vowels is about 
90%. Our experiment shows that the parameters initialized by 
PPCA (probabilistic principle component analysis) and first 
order vector auto-regression tends to be a local optimal solution. 
And the Viterbi decoding works well with this initial set of 
parameters. 

 
After the initialization, the model is learned by the EM 
algorithm introduced in section 2.1. It was found that the 
learning algorithm tends to be unstable if no constraint is 
put on the noise covariance of Qj and Rj. To avoid 
instability, Qj and Rj matrices are kept unchanged during 
the EM updating. It was found that the learning is 
converged after only 2 iterations which indicates that the 
initial parameters are near a local optimal solution. It is 
instructive to take a look at the state matrix Aj and state 
noise covariance matrix Qj found by the learning 
algorithm. 

Table 1. Experiment result  
 Training Set 

 Vowels Nasals Stops and 
Fricatives 

Silence 
and Stop 
Closure 

#Frames 10914 1480 6340 5272 
Correct % 89 61 51 80 
 Testing Set 
#Frames 4579 580 2239 1939 
Correct % 92 57 51 71 
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Table 2. Confusion matrix of the segmentation 

 Classification results of the training 
set 

 Vowels Nasals 

Stops 
and 
Fricati
ves 

Silence 
and Stop 
Closure 

Vowels 0.88 0.03 0.05 0.02 
Nasals 0.22 0.61 0.06 0.10 
Stops and Fricatives 0.14 0.02 0.51 0.32 
Silence and Stop 
Closure 0.06 0.02 0.13 0.80 

 Classification results of the training 
set 

Vowels 0.92 0.02 0.05 0.01 
Nasals 0.37 0.57 0.04 0.03 
Stops and Fricatives 0.16 0.01 0.51 0.32 
Silence and Stop 
Closure 0.06 0.04 0.18 0.71 

Notice that the diagonal elements of A1 are significantly 
larger than other Aj’s, and the diagonal elements of Q1 are 
significantly smaller than other Qj’s. One explanation of 
the results is that the acoustic features of vowels are more 
correlated (change more smoothly), and are better 
represented by a low dimensional manifold.  
 
         
3.2. Manner Segmentation using the switching Kalman 
filter 
We used the decoding algorithm introduced in section 2.2 
to segment speech data from the TIMIT database. 
 

 

I - 754

➡ ➡



40 60 80 100 120 140 160 180

0.5

1

1.5

2

2.5

3

3.5

4

./train/dr1/FVMH0/SI836.PHN2

Bl
ac

k 
Da

sh
 li

ne
 is

 th
e 

De
co

de
d 

St
at

e

FIG1. Suboptimal State Squence Decoding by Viterbi approximation

4 2 1 2 1 21 3 1 4 3 1 3 43 1 4

 
Figure1. The segmentation of the speech signal, where the red 
vertical line is the true boundary of the segmentation. Signals 
with amplitude less than 0.5 are LSF coefficients, and the digits 
just above them are the true class labels of the LSF frames.  The 
black dashed lines are the segmentation resulting from Viterbi 
decoding with amplitude representing its category. Group 1  is 
vowels, semivowels and glides; group 2 is nasals; group 3 is 
stops and fricatives; and group 4 is silence and stop closure.   
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FIG2. Trajectory of the state space through time
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Figure2. One sample of the trajectory of the continuous 
state, where the red vertical line is the true boundary of the 
segmentation. the digits just above the box are the true group of 
the LSF frames, and the horizontal lines in the middle are 
the segmentation by the Viterbi algorithm. The group of 1 
to 4 corresponds to the amplitude of 11 to 14.  
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