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ABSTRACT

Segmenting the acoustic signal in the TIMIT database by
a switching state Kalman filter model is reported in this
paper. According to the assumption that the high
dimensional acoustic feature vector of the LSF (Line
Spectrum Frequency) of the speech signal is probably
embedded in a low dimensional space, a two dimensional
vector is used to represent the continuous state vector in
this model. The parameters of the model are initialized by
PPCA (probabilistic principle component analysis) and
first order vector auto-regression, and are re-estimated by
the EM algorithm. We show that this model can be used
to classify vowels, nasals, frication and silence by an
approximate Viterbi inference.

1. INTRODUCTION

In the conventional speech recognition system, the
features of the speech signal, for example MFCC, are
modeled by HMM. The dynamics of the speech signal are
captured by the movement of the discrete state variable. In
this model, the dependency among the frames within each
discrete state is ignored.

The application of a stochastic linear system in speech
recognition is introduced in [1], where the dimension of
the continuous space is the same as the dimension of the
observation space. Comparing to the independent-frame
HMM, the model in [1] showed a superior performance.
A more parsimonious, target directed dynamic model is
reported in [2], where a performance comparable to
conventional HMM is achieved. A derivation of the EM
algorithm for the estimation of extended Kalman filter
(EKF) parameters is reported in [3], and a dual estimation
method with much better convergence properties is
proposed.

Although the most appropriate model structure for speech
recognition is still an open question, it is obvious that
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inter-frame dependence of acoustic observations is caused
in part by the continuous movement of the tongue, lips
and other articulators. Research with the articulator data
[4, 5] indicates that two factors are sufficient to represent
the steady state of the articulators of the vowels. In this
paper, we demonstrate that the switching Kalman filter
model with only a two dimensional vector as the hidden
continuous state can group the acoustic data into vowels,
nasals, frication and silence effectively.

2. SWITCHING KALMAN FILTER MODEL

The switching state model can be described by the
following equations:

X = A(St )xt—l v, (st )a

vt(St) ~ N(O,Q(St))

Y= C(St)xt +,U(St)+Wt(St),
w; (St) ~ N(O,R(St ))

T(l’]) = PI'(St =1 | st—l = ])’

where i, j=12,---G

A switching state Kalman filter can be used to model
piecewise linear dynamic time series. The equations
above assume that the discrete switching state s, is also a

first order Markov process.

2.1. EM learning of switching Kalman filter

In the learning process, we assume that the status of the
discrete state is known (i.e. the segmented data is used in
the training), so only the continuous states and parameters
of the Kalman filter are estimated.

In the EM algorithm, sufficient statistics of the hidden

continuous state are calculated by the Kalman smoother in
the E step, and the values of the parameters were found by
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maximizing the lower bound of the likelihood function in
the M step [6].

Dlognh} | 0)= Y X p(X, | Y,.0,)logn(X,.,1,.)

- [dx- p(X, | ¥,,6,)logn(X, | ¥,.6,,)
where N is the number of different training sequences,
YnT = {yn,layn,z""yn,r} ’XnT ={X, 15X, 0, X, p 8
ndf(s, = j)=1{4,,C,,u,;,0;,R } where

j=12,--- G, Gis the total number of classes ,

E step: The sufficient statistics are calculated as follows:

£, =Elx, | Y]
v

i =covx,x, | Y]
Viear = cov[x,x,, |Y']
< xt|Txt\TS () >=VyS, () + £t|T'£t'\TS1 ()

< xz|sz S (D) >=V,, 1S, (j)+‘£t\T'£t'71|TSt (/)

M step: The parameter updating formulas are as follows:

N T, N T, -
=D <Ep k" S DS < E Xy () >]

n=l t=2 n=l t=2
N T, N T,
A . A A . -1
Cj = [Zzyt,n ’ xt,n\TSt (.])] [ZZ< xt\Txt\T'St (]) >]
n=l t=2 n=l t=2
N T,

ZZ< 'i’-t\T')%\Tt 'S,.()>—4; < )Act\TfCH\T 'S, ())>
_ n=l t=1
Qj - N
D7, -

n=1

=[2Tn(j)]-1 D> S, () -

n=l t=1

—[ZT 1 [Zzyt S ()]

n=l t=1

/ tanytn (.])

2.2. Approximate optimal discrete state sequence
inference using Viterbi approximation [7]

Given the trained model, the segmentation problem is
defined as to find the optimal sequence of states.S T*,

where S ={§,S,, ;5 and S” = argn}ax{ logp(S" | 1)}

The exact inference of the optimal state sequence is
intractable, since

p(r" |8 =[dx" p(¥" | X7, 8" )p(X" |ST)
and p(X"|S")is a 2T-dimensional jointly Gaussian
distribution.

The approximate Viterbi inference can be stated as
follow:
1. Initialization

Jm=%(y1—6x1)'<vl+&)4<yl Cx1>+ V4R | ~log()
i=12,---,G

2. Recursion

J(l) mlr( 1(/)+ 1i— 1(i=j))

Jt,t,la,j)%(y,— % ) (CY )G +R) (3, -

1 .
3 | GV GG+ R, [ =log(T ;)

@)= argmm( R ORI Y))
j:1,2,'.‘,G’ 12192)‘.')G t:2’33."’T
3. Termination

sy = arg min (J, (7))

4. Path backtracking

S;:¢(Sj+l) t:T_l»”'sl

3. EXPERIMENT

We used this switching state Kalman filter to analyze the
acoustic signals in the TIMIT database. In this
experiment, the four discrete states are used to represent
categories of vowels, nasals, frication and silence
respectively.

The original waveform data is down-sampled to 8§ KHz.
The acoustic features are represented by the coefficients
of a 10th order LSF (line spectral frequency). The frame
rate is 10ms with a window size of 20 ms, and a Hamming
window is used. The reason to choose LSF as the feature
vector is that the series of LSF coefficients during vowel
and glides may be modeled by a linear dynamic model
[8]. The dimension of the hidden continuous state is 2,
which is supposed to represent the low dimensional
dynamics embedded in a high dimensional observation
space.

In this experiment, the data of 10 female speakers in the
DRI1 of the TRAIN data in TIMIT were used to train the
model, and 4 other female speakers in the DRI of the
TRAIN data were used as the testing set.
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3.1. Initialization and learning the parameters of the
model

Although EM algorithm is guaranteed to increase the log
likelihood until convergence, it does not guarantee to find
the global optimal solution. When starting from a poor
initial point, the converged solution may be trapped in
some local maximum which is far away from the optimal
solution. In our experiment, C; and R; are initialized by
probabilistic PCA [9], and the state matrix A; and Qj are
initialized by the first order vector auto-regression, where
j=1,2,3,4 represent 4 categories or 4 discrete states, and 1
is the state of vowels, semivowels and glides; 2 is the state
of nasals; 3 is the state of frication which includes stop
release and fricative segments, and 4 is the state of the
silence and stop closure.

After the initialization, the model is learned by the EM
algorithm introduced in section 2.1. It was found that the
learning algorithm tends to be unstable if no constraint is
put on the noise covariance of O; and R;. To avoid
instability, O; and R; matrices are kept unchanged during
the EM updating. It was found that the learning is
converged after only 2 iterations which indicates that the
initial parameters are near a local optimal solution. It is
instructive to take a look at the state matrix 4; and state
noise covariance matrix (; found by the learning

algorithm.
0.94 0.0l 0.12 0
' {0.02 0.96} 9, :{ 0 0.07}
4, :'0.7 0.09} 0. :{0.43 0 }
10.03 0.62 0 0.58
4, - [ 0.77 0.03} 0. - {0.35 0 }
|- 0.02 0.7 0 0.44
4 [ 0.67 o.oz} 0. - {0.49 0 }
Y 1-0.09 0.76 ! 0 0.37

Notice that the diagonal elements of A4, are significantly
larger than other 4,’s, and the diagonal elements of Q; are
significantly smaller than other O;’s. One explanation of
the results is that the acoustic features of vowels are more
correlated (change more smoothly), and are better
represented by a low dimensional manifold.

3.2. Manner Segmentation using the switching Kalman
filter

We used the decoding algorithm introduced in section 2.2
to segment speech data from the TIMIT database.

The number of frames used in training and testing sets and
the correctness rate are listed in Table 1. As an illustration
of the segmentation, a decoding sequence as well the
ground truth is plotted in Figure 1. And one sample of the
trajectory of the state space is shown in Figure 2.

Table 2 is a confusion matrix, showing the percent
misclassifications of each type. Nasals are primarily
misclassified as vowels, while frication and silence
segments are primarily misclassified as one another.

4. CONCLUSION
In this paper, a switching state Kalman filter model is used to
segment acoustic signals from TIMIT into four different
subcategories. The preliminary result shows that this model can
successfully capture dynamics of the low dimensional manifold
embedded in the high dimensional feature space (LSF feature
space). The (frame) classification rate of the vowels is about
90%. Our experiment shows that the parameters initialized by
PPCA (probabilistic principle component analysis) and first
order vector auto-regression tends to be a local optimal solution.
And the Viterbi decoding works well with this initial set of
parameters.
Table 1. Experiment result

Training Set
Silence
Vowels | Nasals Stgps .and and Stop
Fricatives
Closure
#Frames 10914 1480 6340 5272
Correct % 89 61 51 80
Testing Set
#Frames 4579 580 2239 1939
Correct % 92 57 51 71

Table 2. Confusion matrix of the segmentation

Classification results of the training
set
St(()ips Silence
Vowels | Nasals | ¢ | and Stop
Fricati
Closure
VveEs
Vowels 0.88 0.03 0.05 0.02
Nasals 0.22 0.61 0.06 | 0.10
Stops and Fricatives | 0.14 0.02 0.51 0.32
Silence —and - St0p | g 06 | 0.02 | 0.13 | 0.80
Closure
Classification results of the training
set
Vowels 0.92 0.02 0.05 0.01
Nasals 0.37 0.57 0.04 | 0.03
Stops and Fricatives | 0.16 0.01 0.51 0.32
Silence -and S0P | o 06 | 0.04 | 0.18 | 0.71
Closure

I -754




FIG1. Suboptimal State Squence Decoding by Viterbi approximation
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Figurel. The segmentation of the speech signal, where the red
vertical line is the true boundary of the segmentation. Signals
with amplitude less than 0.5 are LSF coefficients, and the digits
just above them are the true class labels of the LSF frames. The
black dashed lines are the segmentation resulting from Viterbi
decoding with amplitude representing its category. Group 1 is
vowels, semivowels and glides; group 2 is nasals; group 3 is
stops and fricatives; and group 4 is silence and stop closure.

FIG2. Trajectory of the state space through time
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Figure2. One sample of the trajectory of the continuous
state, where the red vertical line is the true boundary of the
segmentation. the digits just above the box are the true group of
the LSF frames, and the horizontal lines in the middle are
the segmentation by the Viterbi algorithm. The group of 1
to 4 corresponds to the amplitude of 11 to 14.
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