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ABSTRACT jectory function to balance the uncertainties of both the hidden dy-
namic and the observable acoustics, and introduces a deterministic

We propose and evaluate a new acoustic model that combineglynamic system, instead of a stochastic dynamic system, to char-
HMM and a special type of the hidden dynamic model (HDM) — acterize the hiddemocal-tract resonanc€VTR) dynamics. Re-
a target-directed hidden trajectory model — into a single integrated moving the frame-wise noise term used e.g. in [2] allows to elimi-
model named HTHMM. The new model provides a computatio- nate the Kalman filter in training and decoding, significantly sim-
nal model of coarticulation by representing the internal dynamics plifying mathematical representation and recognizer implementa-
of human speech based on the hidden trajectory of the vocal-tracttion. Our model uses mixtures of linear mappings from the VTR-
resonances. This paper focuses on the general structure of the neWased hidden dynamic variables to the acoustic observations [2].
model and the EM training procedure. The corresponding MAP 11,0 ain goal of our study was to compare the HTHMM's ability
decoding algorithm and more detailed evaluation are given in [1]. of modeling coarticulation, using only context-independent (Cl)
Speech recognition experimental results on the Aurora2 taskphoneme units, with that of a traditional context-dependent (CD)
demonstrated that the new model, although usinly context-in- HMM. This study has so far been carried out only on a small-
dependent phoneme unifiso context-dependent parameters), is vocabulary task (Aurora2 TI-DIGITs) to keep training and decod-
still slightly superior in word error rate to the corresponding cross- ing cost low and to eliminate dependence on the language model.
word triphone HMM. This provides the evidence that the coar- |, ¢ontrast to all previous work on HDMs, where the lack of a di-

ticulatory mechanism represented by the HTHMM via the model o gecoding algorithm became a bottleneck to research progress,
structure matches the traditional context-dependent modeling ap+p, tnis study we have developed a novel full MAP decoding algo-

proach based on enumeration of model parameters. rithm described in detail in [1]. Specifically, this algorithm takes
direct account of the continuous hidden state variables. All evalu-
1. INTRODUCTION ation results presented in this paper have been obtained using this

decoder rather than using-best evalution.

Speech recognition technology has achieved significant progressris paper is organized as follows. Section 2 introduces the
with the introduction of the Hidden Markov Model (HMM). How-  {i1HimMM model structure, and Section 3 the corresponding train-
ever, the current technology is often not satisfactory in real-world ing algorithm. Experimental results are presented in Section 4.

applications in the presence of mismatch between training and de-in )y, Section 5 concludes the paper and discusses future work.
coding. One important reason is speaking rate variation and the

related coarticulation. To overcome the limitation of the current
technology_, we belieye the itis necessary to take i_nto _account SOMe 5 THE HIDDEN-TRAJECTORY HMM (HTHMM)

key dynamic properties of human speech production into the math-

ematical representation, in particular the basic target-directed dy-The HTHMM presented in this section combines the HMM with a
namic properties of human speech production. hidden trajectory model — a new special form of HDM in which the
This paper reports our recent efforts in coarticulation model- internal speech dynamics is modeled by a noise-free recursively-
ing. The novel Hidden-Trajectory HMM (HTHMM) proposed and  defined VTR-trajectory function of time. In contrast to the HDM
evaluated in this paper draws heavily on previous work on the vari- in [2] which injects noise (modeling uncertainty) at each new time
ous types of Hidden Dynamic Models (HDM) [2, 3, 4] and a num- frame beforepredicting the hidden dynamic variable at the next
ber of existing segment models as discussed in [5]. However, ourtime frame, our model injects no such type of noise and thereby
new HTHMM drops the segmental aspects in favor of an HMM- significantly simplying the training and decoding algorithms.

like multi-state and frame-based mixture architecture. Similar to

several previous HDM models [8, 2, 4, 9], the HTHMM presented ) )

in this paper uses a target-directed trajectory function to represent2-1. Hidden Trajectory Model

hidden dynamic variables. Continuity constraints across adjacent.

. . . The hidden trajectory model has the same general structure as
phones explicitly model long-span coarticulation effects.

the HDM. It consists of a hidden trajectory function followed by
However, the new HTHMM uses an internal noise term in the tra- a mapping model. The former is used for representing internal
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speech dynamics for the cause of coarticulation, and the latter forformance (to be discussed in Section 4) was obtained by choosing
describing the relationship between the hidden variables and thethe units to be the monophone (Cl) HMM states.

observed acoustic features. These two components are

(t) = g(t) +uwl(t) ()
oft) = h"V(x(t) +(t) @

with ¢(¢) being the predicted trajectory of VTR(t) the hidden
true trajectoryu(t) the speech unit at franteandh™ (z) a speech-
unit dependent mapping function to map the hidden VTR to the
acoustic measurement (such as MFCCs). In genfeték) is non-
linear. Thew(t) andwv(t) denote i.i.d. Gaussian noise with zero
mean and covariance matric€sand R, respectively, modeling
deviations of the actual values oft) ando(t) from the expected
ones. Note that the noige(t) in Eg. 1 does not enter into any
frame-based recursion as contrasting the model described in [2].

2.1.1. Target-directed trajectory function

In our hidden-trajectory model, the trajectory function gif)
is described by a causal, second-order discrete-time critically-
damped unity-gain, low-pass filter:

9(t) = 27uw9(t—1) — Yo g(t—2) + 1—vuw)*Tuwy @)

whereT,, ) is thetargetvector associated with the corresponding
phone andy, ) the (scalar) system-dynamic parameter.

2.1.2. Mapping from hidden variables to observations

Here, we want to find an appropriate statistical relationship among
observatioro, the hidden variable, and and speech unit Let’s
expand the non-linear function(z) by a Taylor series to obtain

(4)

Substitutingi(z) into Eq. (2) and combining the residual and noise
terms, we obtain

o(t) G4+ H-(z—2) +0'(t) (5)

If we assume that’(t) is zero-mean Gaussian, then the param-
etersH, pi, andz will fully characterize the conditional PDF of

p(o|u, z). It is obvious that one single linear function cannot ap-
proximate theh(z) well except in a small range. Hence, we em-

i+ H - (z—2) + residualz—z).

It can be easily seen that when settiflg, = 0, the model be-
comes identical to a classical HMM system. This degenerated
model has been used for units where the model parameters do not
depend on the hidden variablesuch as silence and noise.

In the general cased,, # 0), the HTHMM with the left-to-right
HMM topology is an HMM whose Gaussian means in the output
mixture distributions are adapted to the long-span context captured
by the hidden-trajectory model, hence the name HTHMM.

Using the HMM topology, the continuous stat®f the HTHMM
becomes dependent on the HMM state sequence, and the observa-
tion becomes dependent on batlandz. Thus, we generalize the
HMM by a second hidden layer, the continuous trajectory gtate

2.3. Conditional probabilities

Based on the above model components, we have the following
conditional PDFs:

p(z(8)Im(t), U, ©)
p(zlg,©)

p(2(t)]g(t),
N(z9;Q)

o) (6)

)

whereU = (u(1),...,u(t),...,u(T")) is the entire sequence of unit
assignments,(t), wi hICh fully determineg(t), and
p(olz,m,u,®) = p(o|lz,m,0) = N(0;hm(z); Rm) (8)
wn(t) = p(m(t)lo(t),U,0)
p(o(t)|m(t), ©) - p(m(t)|U, ©)
= 9)
/Zﬂp(O(t)\m’v ©) - p(m'|U, ©)
where
p(olm,©) = [ plolz.m.©) - p(:m,©) &= (10)

z

3. MODEL TRAINING

One principal contribution of this study is the development of the
model training algorithm, which allows automatic determination
of all parameters from a given set of training data. The developed
algorithm consists of two steps that are iterated for several itera-

ploy several sets of the above parameters in forming a Gaussianjons. One step is parameter estimation given speech unit bound-

mixture distribution {n shall denote the mixture component).

This mapping function bears structural similarity to the mixture
linear mapping in [2]. An important difference, however, is that
the model in [2] is segmental — the same mixture component is
used for all frames of a speech unit — while in our model the
mixture component is chosen independently in each frame. [10]

also describes a similar structure for single Gaussians, but has né

model for the prediction error of.

2.2. Embedding the Hidden Trajectory Model into HMM

In the description up to now, no assumption has been made on the

choice of the units or the HTHMM’s discrete states. Preliminary
speech-recognition experiments showed that choasiag phone

units did not produce the desired performance. Much better per-

aries, and the other step is optimization of the speech unit bound-
aries. These two steps are described below in detail.

3.1. Parameter Estimation Given the Speech Unit Boundaries

With the speech-unit alignmebt given, the parameter estimation
Igorithm developed is based on the EM priciple where the hid-
den (missing) variables até (a collection ofz variables) and\/

(the mixture assignments of each frame). Assuming observation
frames to be independent of each other, and given the parameter
setO, the joint PDF can be written as

= [[rl@)l=)

- p(2(H)|m(t), U, ©) -

p(0, Z, M|U, ©) m(t), u(t), ©)

p(m(t)[u(t), ©)

(11)
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3.1.1. E Step

The O-function in the E-step of the EM algorithm is computed
below as the conditional expectation over the missing data:

2(0.6) = [ 3 102p(0. 2, MU 6)-p(2, M/0,U, ) 82
7 M

where © is the model parameters associated with the immedi-
ately previous iteration of the EM algorithm, adis the updated
paramter set. The posterior can be decomposed as

The Q-function can be decomposed into two terms:
Q(e,0)

Q:+Qp (13)

The two terms are:

1 T M
Q. = 5 Z Z WM(t) |:l09|Q| + log |Rm|
t=1 m=1
+ B{etln - (R2) ™ elim |
+ Bfe2l (@) e2um || + const  (14)
T M
Q = > Y logp(m(t)|U,0) - wmlt) (15)

with ely, = o(t) — [Hm(2(t) — Zm) + pm] and €2, =
z(t) — g(t). For notational simplicity, we now usé{-} to rep-
resent conditional expectatidty.|on m,e){-} henceforth.

3.1.2. M Step

The M-step reestimation for all parameters excgptis derived
via setting the partial derivatives of tl@-function to zero, giving:

Pm®) = :},-éwm@) (16)
T )

: {XT; [wm(t)f{sz}]}l )

fim = éwma) o(t) / iwm@) (18)

b = iwmu)f{z(ﬂ}/iwm(t) (19)

where

m'gm

o) = oft) — fim —
E{zt} - [AIEIR,;ULIW+Q*1]71
- [HERR 60 + Q7 g(0)]
E{zt(zt)T} = {H,ER:anm+Q_1}_1+E{zt}.E{zt}T

The estimate of the speech units’ target vectbisrequires an
equation system since dll, are coupled through the continuity
constraint. We define:

T = (T1T2> 1)
T, = T-e, (22)
ew = (0,0,...,1,...,0,0)" with 1 at position (23)
g(t) = T-b(t) (24)

= 2%ub(t—1) — 72 b(t—2) + (1—7u(w))  eury (25)

With these, we can formulate the target estimates:

T [ZZwmu)AE{z(t)}-(B(t»u}

: [Z > wm(t) - b(t) -

t=1 m=1

(13<t))u} (26)

Because there is no closed-form solutionfer we use a gradient-
based method (which we actually implement numerically):

A = 404 2 1)
0Yu

5

3.2. State Boundary Optimization

Most of the previous work on HDM did not optimize the speech
unit boundaries because no effective decoders for finding the true
optimal path were available. Running our novel HTHMM decoder
[1] in forced-alignment mode, we re-segmented each training ut-
terence into the corresponding discrete states. The optimization
is similar to the Viterbi training in HMM: the decoder segments
the state boundaries, and given such information reestimation as
described above is carried out.

4. EXPERIMENTAL RESULTS

Since this paper focuses on the model description and training al-
gorithms, we only include a few key results of our study. More
results can be found in [1].

The HTHMM has been evaluated on a small-vocabulary task of
continuous-digit recognition (the clean portion of Aurora2/TI-
DIGITs). The small-vocabulary task allows us to keep dependence
on the language model low. The constructed speech recognition
system is gender independent, with MFCC features of 39 dimen-
sions. The standard HTK feature configuration from the Aurora2
distribution was used. In order to compare the recognition per-
formance among different models, we show results for baseline
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Table 1. Performance comparison among baseline and the newTable 2. Performance comparison for different numbers of Viterbi

HTHMM systems. iterations (8 mixtures).
Id System WER Id | Number of forced log LL after EM WER
#mixcomp:| 16 | 32 alignments iteration 1 | converged| [%]

| baseline: traditional HMM | TO | O -59.11 -55.53 0.54
B1 [ context-independent HMM 0.69% | 0.61% T1]1 -55.27 -55.05 | 0.52
B2 | cross-word triphone HMM 0.49% | 0.40% T2 ]2 -54.99 -54.90 | 0.53

| proposed HTHMM system | _

| M1 [ HTHMM (context-independentj 0.43%[ 0'37%‘ We are currently working on large vocabulary tasks and hope

to demonstrate that equally excellent performance of the new
HTHMM approach can be established despite the weaker phono-
HMM using monophones and cross-word triphones. All systems tactic constraints and more confusable acoustic space.

used a subset of 20 phonemes with three left-to-right states.

For both HMM and HTHMM systems, we show word error rates 6. ACKNOWLEDGEMENTS
(WER) for models with 16 and 32 mixture components per state. )
Table 1 provides a summary of the experiment results demonstrat-The authors wish to thank Drs. A. Acero, E. Chang, A. Gunawar-

ing the comparative WERs among the baseline HMM and the newdana, and X.D. Huang and other EARS-project researchers at
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