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ABSTRACT

We propose and evaluate a new acoustic model that combines
HMM and a special type of the hidden dynamic model (HDM) –
a target-directed hidden trajectory model – into a single integrated
model named HTHMM. The new model provides a computatio-
nal model of coarticulation by representing the internal dynamics
of human speech based on the hidden trajectory of the vocal-tract
resonances. This paper focuses on the general structure of the new
model and the EM training procedure. The corresponding MAP
decoding algorithm and more detailed evaluation are given in [1].

Speech recognition experimental results on the Aurora2 task
demonstrated that the new model, although usingonly context-in-
dependent phoneme units(no context-dependent parameters), is
still slightly superior in word error rate to the corresponding cross-
word triphone HMM. This provides the evidence that the coar-
ticulatory mechanism represented by the HTHMM via the model
structure matches the traditional context-dependent modeling ap-
proach based on enumeration of model parameters.

1. INTRODUCTION

Speech recognition technology has achieved significant progress
with the introduction of the Hidden Markov Model (HMM). How-
ever, the current technology is often not satisfactory in real-world
applications in the presence of mismatch between training and de-
coding. One important reason is speaking rate variation and the
related coarticulation. To overcome the limitation of the current
technology, we believe the it is necessary to take into account some
key dynamic properties of human speech production into the math-
ematical representation, in particular the basic target-directed dy-
namic properties of human speech production.

This paper reports our recent efforts in coarticulation model-
ing. The novel Hidden-Trajectory HMM (HTHMM) proposed and
evaluated in this paper draws heavily on previous work on the vari-
ous types of Hidden Dynamic Models (HDM) [2, 3, 4] and a num-
ber of existing segment models as discussed in [5]. However, our
new HTHMM drops the segmental aspects in favor of an HMM-
like multi-state and frame-based mixture architecture. Similar to
several previous HDM models [8, 2, 4, 9], the HTHMM presented
in this paper uses a target-directed trajectory function to represent
hidden dynamic variables. Continuity constraints across adjacent
phones explicitly model long-span coarticulation effects.

However, the new HTHMM uses an internal noise term in the tra-

jectory function to balance the uncertainties of both the hidden dy-
namic and the observable acoustics, and introduces a deterministic
dynamic system, instead of a stochastic dynamic system, to char-
acterize the hiddenvocal-tract resonance(VTR) dynamics. Re-
moving the frame-wise noise term used e.g. in [2] allows to elimi-
nate the Kalman filter in training and decoding, significantly sim-
plifying mathematical representation and recognizer implementa-
tion. Our model uses mixtures of linear mappings from the VTR-
based hidden dynamic variables to the acoustic observations [2].

The main goal of our study was to compare the HTHMM’s ability
of modeling coarticulation, using only context-independent (CI)
phoneme units, with that of a traditional context-dependent (CD)
HMM. This study has so far been carried out only on a small-
vocabulary task (Aurora2 TI-DIGITs) to keep training and decod-
ing cost low and to eliminate dependence on the language model.

In contrast to all previous work on HDMs, where the lack of a di-
rect decoding algorithm became a bottleneck to research progress,
in this study we have developed a novel full MAP decoding algo-
rithm described in detail in [1]. Specifically, this algorithm takes
direct account of the continuous hidden state variables. All evalu-
ation results presented in this paper have been obtained using this
decoder rather than usingN -best evalution.

This paper is organized as follows. Section 2 introduces the
HTHMM model structure, and Section 3 the corresponding train-
ing algorithm. Experimental results are presented in Section 4.
Finally, Section 5 concludes the paper and discusses future work.

2. THE HIDDEN-TRAJECTORY HMM (HTHMM)

The HTHMM presented in this section combines the HMM with a
hidden trajectory model – a new special form of HDM in which the
internal speech dynamics is modeled by a noise-free recursively-
defined VTR-trajectory function of time. In contrast to the HDM
in [2] which injects noise (modeling uncertainty) at each new time
framebeforepredicting the hidden dynamic variable at the next
time frame, our model injects no such type of noise and thereby
significantly simplying the training and decoding algorithms.

2.1. Hidden Trajectory Model

The hidden trajectory model has the same general structure as
the HDM. It consists of a hidden trajectory function followed by
a mapping model. The former is used for representing internal
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speech dynamics for the cause of coarticulation, and the latter for
describing the relationship between the hidden variables and the
observed acoustic features. These two components are

z(t) = g(t) + w(t) (1)

o(t) = hu(t)(z(t)) + v(t) (2)

with g(t) being the predicted trajectory of VTR,z(t) the hidden
true trajectory,u(t) the speech unit at framet, andhu(z) a speech-
unit dependent mapping function to map the hidden VTR to the
acoustic measurement (such as MFCCs). In general,hu(z) is non-
linear. Thew(t) andv(t) denote i.i.d. Gaussian noise with zero
mean and covariance matricesQ andR, respectively, modeling
deviations of the actual values ofz(t) ando(t) from the expected
ones. Note that the noisew(t) in Eq. 1 does not enter into any
frame-based recursion as contrasting the model described in [2].

2.1.1. Target-directed trajectory function

In our hidden-trajectory model, the trajectory function ofg(t)
is described by a causal, second-order discrete-time critically-
damped unity-gain, low-pass filter:

g(t) = 2γu(t)g(t−1)− γ2
u(t)g(t−2) + (1−γu(t))

2Tu(t) (3)

whereTu(t) is thetargetvector associated with the corresponding
phone andγu(t) the (scalar) system-dynamic parameter.

2.1.2. Mapping from hidden variables to observations

Here, we want to find an appropriate statistical relationship among
observationo, the hidden variablez, and and speech unitu. Let’s
expand the non-linear functionh(z) by a Taylor series to obtain

h(z) = µ̄ + H · (z−z̄) + residual(z−z̄). (4)

Substitutingh(z) into Eq. (2) and combining the residual and noise
terms, we obtain

o(t) = µ̄ + H · (z−z̄) + v′(t) (5)

If we assume thatv′(t) is zero-mean Gaussian, then the param-
etersH, µ̄, and z̄ will fully characterize the conditional PDF of
p(o|u, z). It is obvious that one single linear function cannot ap-
proximate theh(z) well except in a small range. Hence, we em-
ploy several sets of the above parameters in forming a Gaussian
mixture distribution (m shall denote the mixture component).

This mapping function bears structural similarity to the mixture
linear mapping in [2]. An important difference, however, is that
the model in [2] is segmental — the same mixture component is
used for all frames of a speech unit — while in our model the
mixture component is chosen independently in each frame. [10]
also describes a similar structure for single Gaussians, but has no
model for the prediction error ofz.

2.2. Embedding the Hidden Trajectory Model into HMM

In the description up to now, no assumption has been made on the
choice of the unitsu or the HTHMM’s discrete states. Preliminary
speech-recognition experiments showed that choosingu as phone
units did not produce the desired performance. Much better per-

formance (to be discussed in Section 4) was obtained by choosing
the units to be the monophone (CI) HMM states.

It can be easily seen that when settingHm = 0, the model be-
comes identical to a classical HMM system. This degenerated
model has been used for units where the model parameters do not
depend on the hidden variablez, such as silence and noise.

In the general case (Hm 6= 0), the HTHMM with the left-to-right
HMM topology is an HMM whose Gaussian means in the output
mixture distributions are adapted to the long-span context captured
by the hidden-trajectory model, hence the name HTHMM.

Using the HMM topology, the continuous stateg of the HTHMM
becomes dependent on the HMM state sequence, and the observa-
tion becomes dependent on bothu andz. Thus, we generalize the
HMM by a second hidden layer, the continuous trajectory stateg.

2.3. Conditional probabilities

Based on the above model components, we have the following
conditional PDFs:

p(z(t)|m(t), U, Θ) = p(z(t)|g(t), Θ) (6)

p(z|g, Θ) = N (z; g; Q) (7)

whereU = (u(1),...,u(t),...,u(T )) is the entire sequence of unit
assignmentsu(t), which fully determinesg(t), and

p(o|z, m, u, Θ) = p(o|z, m, Θ) = N (o; hm(z); Rm) (8)

ωm(t) = p(m(t)|o(t), U, Θ)

=
p(o(t)|m(t), Θ) · p(m(t)|U, Θ)
M∑

m′=1

p(o(t)|m′, Θ) · p(m′|U, Θ)

(9)

where

p(o|m, Θ) =

∫
z

p(o|z, m, Θ) · p(z|m, Θ) dz (10)

3. MODEL TRAINING

One principal contribution of this study is the development of the
model training algorithm, which allows automatic determination
of all parameters from a given set of training data. The developed
algorithm consists of two steps that are iterated for several itera-
tions. One step is parameter estimation given speech unit bound-
aries, and the other step is optimization of the speech unit bound-
aries. These two steps are described below in detail.

3.1. Parameter Estimation Given the Speech Unit Boundaries

With the speech-unit alignmentU given, the parameter estimation
algorithm developed is based on the EM priciple where the hid-
den (missing) variables areZ (a collection ofz variables) andM
(the mixture assignments of each frame). Assuming observation
frames to be independent of each other, and given the parameter
setΘ, the joint PDF can be written as

p(O, Z, M |U, Θ) =

T∏
t=1

p(o(t)|z(t), m(t), u(t), Θ) (11)

· p(z(t)|m(t), U, Θ) · p(m(t)|u(t), Θ)
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3.1.1. E Step

TheQ-function in the E-step of the EM algorithm is computed
below as the conditional expectation over the missing data:

Q(Θ, Θ̂) =

∫
Z

∑
M

log p(O, Z, M |U, Θ̂)·p(Z, M |O, U, Θ) dZ

whereΘ is the model parameters associated with the immedi-
ately previous iteration of the EM algorithm, and̂Θ is the updated
paramter set. The posterior can be decomposed as

p(Z, M |O, U, Θ) = p(Z|M, O, U, Θ) · p(M |O, U, Θ) (12)

TheQ-function can be decomposed into two terms:

Q(Θ, Θ̂) = Qz +Qp (13)

The two terms are:

Qz = −1

2

T∑
t=1

M∑
m=1

ωm(t)

[
log|Q|+ log |Rm|

+ E
{

e1T
t,m · (Ru

m)−1 · e1t,m

}
+ E

{
e2T

t,m · (Qu)−1 · e2t,m

}]
+ const (14)

Qp =

T∑
t=1

M∑
m=1

log p(m(t)|U, Θ) · ωm(t) (15)

with e1t,m = o(t) − [Hm(z(t) − z̄m) + µm] and e2t,m =
z(t) − g(t). For notational simplicity, we now useE{·} to rep-
resent conditional expectationE[·|On,m,Θ]{·} henceforth.

3.1.2. M Step

The M-step reestimation for all parameters exceptγ̂u is derived
via setting the partial derivatives of theQ-function to zero, giving:

P (m|Θ̂) =
1

T
·

T∑
t=1

ωm(t) (16)

Ĥm =

{
T∑

t=1

[
ωm(t) ·

(
v̂(t) · E

{
zt

}T )]}

·

{
T∑

t=1

[
ωm(t) · E

{
zt · zT

t

}]}−1

(17)

ˆ̄µm =

T∑
t=1

ωm(t) · o(t) /

T∑
t=1

ωm(t) (18)

ˆ̄zm =

T∑
t=1

ωm(t) · E
{

z(t)
}

/

T∑
t=1

ωm(t) (19)

R̂m =

T∑
t=1

[
ωm(t) · E

{
v̂(t) · v̂(t)T

}]
/

T∑
t=1

ωn
m (20)

where

v̂(t) = o(t)− ˆ̄µm − Ĥm · ˆ̄zm

E
{

zt

}
=

[
HT

mR−1
m Hm + Q−1

]−1

·
[
HT

mR−1
m v̂(t) + Q−1g(t)

]
E
{

zt(zt)
T
}

=
{

HT
mR−1

m Hm + Q−1
}−1

+ E
{

zt

}
·E

{
zt

}T

The estimate of the speech units’ target vectorsTu requires an
equation system since allTu are coupled through the continuity
constraint. We define:

T̂ =
(
T̂1, T̂2, ...

)
(21)

T̂u = T̂ · eu (22)

eu = (0, 0, ..., 1, ..., 0, 0)T with 1 at positionu (23)

ĝ(t) = T̂ · b̂(t) (24)

b̂(t) = 2γu(t)b̂(t−1)− γ2
u(t)b̂(t−2) + (1−γu(t))

2eu(t) (25)

With these, we can formulate the target estimates:

T̂ =

[
T∑

t=1

M∑
m=1

ωm(t) · E{z(t)} · (b̂(t))u

]

·

[
T∑

t=1

M∑
m=1

ωm(t) · b̂(t) · (b̂(t))u

]−1

(26)

Because there is no closed-form solution forγ̂u, we use a gradient-
based method (which we actually implement numerically):

γ̂(r+1)
u = γ̂(r)

u + ε · ∂Qz

∂γ̂u

∣∣∣∣
γ̂
(r)
u

(27)

3.2. State Boundary Optimization

Most of the previous work on HDM did not optimize the speech
unit boundaries because no effective decoders for finding the true
optimal path were available. Running our novel HTHMM decoder
[1] in forced-alignment mode, we re-segmented each training ut-
terence into the corresponding discrete states. The optimization
is similar to the Viterbi training in HMM: the decoder segments
the state boundaries, and given such information reestimation as
described above is carried out.

4. EXPERIMENTAL RESULTS

Since this paper focuses on the model description and training al-
gorithms, we only include a few key results of our study. More
results can be found in [1].

The HTHMM has been evaluated on a small-vocabulary task of
continuous-digit recognition (the clean portion of Aurora2/TI-
DIGITs). The small-vocabulary task allows us to keep dependence
on the language model low. The constructed speech recognition
system is gender independent, with MFCC features of 39 dimen-
sions. The standard HTK feature configuration from the Aurora2
distribution was used. In order to compare the recognition per-
formance among different models, we show results for baseline
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Table 1. Performance comparison among baseline and the new
HTHMM systems.

Id System WER
#mix comp: 16 32

baseline: traditional HMM
B1 context-independent HMM 0.69% 0.61%
B2 cross-word triphone HMM 0.49% 0.40%

proposed HTHMM system
M1 HTHMM (context-independent) 0.43% 0.37%

HMM using monophones and cross-word triphones. All systems
used a subset of 20 phonemes with three left-to-right states.

For both HMM and HTHMM systems, we show word error rates
(WER) for models with 16 and 32 mixture components per state.
Table 1 provides a summary of the experiment results demonstrat-
ing the comparative WERs among the baseline HMM and the new
HTHMM system.

Compared with the baseline monophone HMM system (experi-
ment B1) with WERs of 0.69% and 0.61% for 16 and 32 mixture
components, respectively, the triphone HMM system produces
29% and 34% fewer errors, respectively (0.49% and 0.40%, B2).
The HTHMM system, however, achieves slightly better WERs
than the HMM triphone system (0.43% and 0.37%). The im-
provement has been achieved by using onlycontext-independent
units, and context dependence was modeled structurally through
the mixture-mean correction term provided by the HTHMM.

Table 2 shows the effect of Viterbi iterations. Our study is the first
to iteratively optimize the state boundaries for training of a HDM-
type model. The table shows the training set’s log likelihood af-
ter one EM iteration and after EM convergence, after 0, 1, and 2
forced alignments. After the very first EM iteration (T0, iteration
1), we have a model that has been estimated using mixture occu-
pation counts computed with HMM parameters, using a HMM-
based state segmentation. One can see that after convergence of
EM (fixed segmentation), a dramatic log-likelihood improvement
(from -59.11 to -55.53) is achieved — the mixture assignment of
the HMM is far from optimal for the HTHMM. A further signifi-
cant likelihood reduction to -55.27 is achieved after the first forced
alignment (T1), and another in the same order of magnitude to -
55.05 after convergence. A small WER reduction is also observed.
The second forced alignment (T2) only leads to very small increase
of likelihood and no WER improvement, so in all our experiments
we only use a single alignment step.

5. CONCLUSIONS AND FUTURE WORK

In this paper, the preliminary work on a new hidden trajectory
model, whose discrete states have been designed using the conven-
tional HMM topology, and its application to speech recognition is
reported. With the CI HTHMM (a compact model with no CD
parameters), we obtained performance improvement over the CD
HMM (cross-word triphone system). This provides evidence that
the coarticulatory mechanism represented by the HTHMM via the
model structure matches the traditional context-dependent model-
ing approach based on enumeration of model parameters. How-
ever, because HTHMM cannot model all properties of coarticula-
tion, we believe some degree of CD modeling may still be needed.

Table 2. Performance comparison for different numbers of Viterbi
iterations (8 mixtures).

Id Number of forced log LL after EM WER
alignments iteration 1 converged [%]

T0 0 -59.11 -55.53 0.54
T1 1 -55.27 -55.05 0.52
T2 2 -54.99 -54.90 0.53

We are currently working on large vocabulary tasks and hope
to demonstrate that equally excellent performance of the new
HTHMM approach can be established despite the weaker phono-
tactic constraints and more confusable acoustic space.
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