
STUDY ON DISTRIBUTED SPEECH SYNTHESIS SYSTEM

TANG Hao, YIN Bo and WANG Ren-Hua

Department of Electronic Engineering and Information Science
University of Science and Technology of China, Hefei, Anhui, 230026, P.R.China

tangh@ustc.edu.cn, boyin@iflytek.com and rhw@ustc.edu.cn

ABSTRACT

Distributed Speech Synthesis (DSS) is a novel field of
study and will be playing an active role in the domain of
speech technology in the post-PC era. This paper focuses
on the architecture design, implementation mechanism and
optimization considerations of DSS systems. First, client-
server based DSS architectures are investigated in server,
client and network parts, respectively. Second, related
system implementation issues are discussed
correspondingly. Finally, system optimization suggestions
in the aspects of data security, QoS control and load
balancing between DSS server and client through dynamic
arbitration are presented.

1. INTRODUCTION

Along with the ever-expanding Web services and
increasingly rising wired and wireless data businesses,
there have been many research and engineering efforts in
developing the speech-enabled applications over the
multimedia networks. Considering the diversified and
distributed characteristics of the multimedia networks, it is
perfect to implement the speech-enabled applications over
such service networks with distributed architectures.
Unlike its counterpart DSR (Distributed Speech
Recognition), which has been studied carefully and has
been standardized by the ETSI STQ Aurora DSR Working
Group [1], DSS is a novel field of study and will be
playing an active role in the domain of speech technology
in the post-PC era.

DSS involves various technologies including text-to-
speech synthesis, distributed computing and system design,
network transmissions and protocols, multithreaded
programming, XML and Web techniques, which
necessitates a detailed and thorough study on DSS.

Fig. 1 represents the principal framework of DSS. In
the service network, DSS clients are a variety of speech-
enabled devices including multimedia PCs, wired and
wireless telephones, PDAs and many other personal
terminals. One or more DSS servers are connected to the

backbone of the service network through a Load
Balancing Proxy (LBP). As service starts, DSS clients
send text to the LBP. The LBP dispatches the text to one
of the DSS servers with a minimum load. The DSS server
accepts the text, converts it into prosodic features and
sends the feature data to the appropriate DSS client for
ultimate processing.

DSS ServerDSS Server DSS Server

Gateway

Data Link

Multimedia PC

PDA

1 2 3
4 5 6
7 8 9
* 8 #

Wireless
Phone

Wired
Telephone

Load Balancing Proxy

Text
Feature Data

Fig. 1 Principal framework of DSS

2. ARCHITECTURES OF DSS

2.1. Fundamental architecture of DSS

Current speech synthesis techniques fall into two distinct
trends: either becoming increasingly complicated in order
to produce highly natural speech (e.g., the corpus-based
approach) or otherwise simplistic in order to meet the
limitations required by low-end computing devices. The
latter, however, always results in unsatisfying naturalness.

Based on traditional client-only or server-only
architecture, realization of high-quality speech synthesis
on personal terminals is infeasible. The reasons lie in 1)
limited CPU and memory resource available on personal
terminals which restricts them to performing non-
complicated tasks and 2) low bandwidth and high error
rate of wireless networks which prevent them from
transmitting pure voice. Client-server based DSS
architecture makes it possible to obtain highly natural
speech on resource-sensitive personal terminals by
demanding that heavy work such as linguistic and prosodic
processing be done at server side.

The fundamental architecture of DSS is illustrated in
Fig. 2. It consists of three interactive parts: server, client
and network. In this client-server architecture, DSS server
is designated with linguistic and prosodic processing

I - 7320-7803-7663-3/03/$17.00 ©2003 IEEE ICASSP 2003

➠ ➡

known simply as the most resource-demanding portion of
text-to-speech synthesis, while DSS client performs a
relatively simple task, the ultimate speech synthesis. The
intermediate results carrying prosodic features generated
by DSS server are transmitted to DSS client via proper
underlying networks and protocols. To-be-synthesized
content can be sought from many sources throughout the
Internet, e.g., an independent content server. It follows that
two sorts of requests can be made by DSS client to DSS
server: one is the Content Request followed by the actual
content (usually text) and the other is the URL Request
requiring that DSS server download the content specified
by the URL provided.

Internet

Wireless
Network

Linguistic
Processing

Prosodic
Processing Speech Synthesis

DSS Server
DSS ClientDSSML

DSSNAP

DSSML
DSSNAP

DSSMLDSSNAP

Fig. 2 Fundamental architecture of DSS

2.2. Architecture of DSS server

DSS server is the entity that accomplishes linguistic and
prosodic processing and then sends the results to DSS
client according to certain concerted protocol and data
exchange standard. The architecture of DSS server is
illustrated in Fig. 3. Four components, the core engine, the
server browser, the transcoder and the XML generator
constitute DSS server. In response to the requests made
from DSS client, DSS server either extracts the content
(Content Request) or drives its server browser component
to download the content from the Internet (URL Request).
The expected content can be plaintext, HTML, E-mail or
other formatted text. The content must be passed to the
transcoder that translates it into plaintext understandable
to the core engine. And then in the core engine, the
plaintext is converted into prosodic features, which
proceed to be processed by the XML generator to generate
their XML representation before being sent to DSS client.

Core
Engine

Transcoder

Server B
row

ser

D
SSN

A
P

X
M

L G
eneratorInternet

DSSML
Hand-label PlatformContent Server

URL
Request
Content
Request

DSSML

DSSML

URL Request
Text

HTML

EMail

Other

DSSML

Text

HTML

EMail

Other

DSSML

DSSML

URL Request
Content Request

UR
L

Content

UR
L/

Co
nt

en
t

Content

Content

D
SS

M
L

HT
TP

HTTP

HTTP

HT
TP

Underlying Network and Protocol

DSS Server

Text ※

※ Prosodic Features
Fig. 3 Architecture of DSS server

XML documents representing pre-generated prosodic
features will be passed directly to DSS client if requested.
These documents are constructed by an offline DSS server
and if necessary, adjusted manually before they reach DSS
server.

2.3. Architecture of DSS client

DSS client is the entity that converts the prosodic features
received into speech. It observes the same protocol and
data exchange standard as DSS server. As shown in Fig. 4,
DSS client comprises the core engine, the XML parser and
the client API that is invoked by the applications whenever
needed. A particular application captures the content from
the Internet and then passes it to the client API, or instead
passes the URL indicating where the content is located. In
the former case, DSS client makes a Content Request to
DSS server, while in the latter case makes a URL Request.
On success, the XML document returned is firstly
processed by the XML parser to restore the original
prosodic features, which are then conveyed to the core
engine for ultimate speech synthesis. In addition to the
speech outputted to the application, requests for external
data initiated by DSS client are sent through the client API.
Thus, the client API must realize callback mechanisms and
force the applications to response to such requests.

Core
Engine

C
lient A

PI

D
SSN

A
P

X
M

L Parser

Internet

Content Server

URL
Request
Content
Request

DSSMLDSSML

URL Request

Content Request

UR
L

Content

U
RL

/
Co

nt
en

t

HTT
P

HTTP

H
TT

P

Underlying Network and Protocol

DSS Client

A
pplication

Text

EMail

HTML

Other

DSSML

URL/External Data Request
URL

Request
Content
Request

DSSML

Speech Speech

External
Data

Request

External
Data

Request

※

※ Prosodic Features

DSSML

Fig. 4 Architecture of DSS client

In case that the initial content is an XML document

representing pre-generated prosodic features, the content
will be sent to the XML parser of DSS client instead of
being sent to DSS server.

2.4. Networks and protocols

The physical connections between DSS server and DSS
client vary according to different application environments.
However, we have defined a uniform high-layer DSS
Network Application Protocol (DSSNAP) to hide the
diversity of underlying protocols and networks from the
users. DSSNAP realizes features of distributed systems as
follows: 1) DSS Remote Procedure Call (RPC) mechanism;
2) Load balance; 3) Scalability; 4) Fault tolerance and 5)

I - 733

➡ ➡

Data compression [2]. The protocol stack of DSS is shown
in Fig. 5.

Physical Link Physical Link Physical Link

IP

TCP

HTTP

DSSNAP

IP IP

TCP

HTTP

DSSNAP

Intermediate NoteServer Note Client Note

TCP/UDP

SNMP

DSSNMP
DSSNAP: Distributed Speech Synthesis Network Application Protocol
DSSNMP: Distributed Speech Synthesis Network Management Protocol

Fig. 5 Protocol stack of DSS

Data exchange plays a vital role in DSS architectures

and therefore must be standardized. A key consideration is
the hierarchical representation of prosodic features, which
can be understood not only by all kinds of DSS clients
built with different techniques but also by human readers,
even by those with little knowledge of phonetics. High
modularization of text-to-speech synthesis as well as the
proved XML techniques make it possible, though not easy,
to accomplish this mission. An XML-based markup
language, called DSS Markup Language (DSSML), has
been defined to act as the proposed standard of data
exchange in DSS systems. In contrast to the standards of
VoiceXML and SALT, DSSML focuses on the
hierarchical representation of prosodic features of the
content and is to some extent similar to existing markups
such as SSML, STML, JSML and SABLE [3].

3. IMPLEMENTATION MECHANISM OF DSS

SYSTEMS

Building a DSS system can be a very complex task, as it
requires multithread and multi-user support at the server
side, limited computing cost and storage at the client side
and low network transmission rate. In this section we will
discuss critical issues concerning these problems.

3.1. Parallel DSS server

In the service network, DSS servers provide concurrent
service to DSS clients. When the workload exceeds the
capabilities of the DSS servers, additional hardware
should be added. Such scalability feature is supported by
one of the two primary methods, both standing out as
mature, broadly effective technologies:

• Large-scale symmetric multiprocessing (SMP):
SMP increases system capability by building larger
SMP machines: 8 CPUs, 16 CPUs, 32 CPUs, and so
on. The primary benefit is that application software
does not need to change - the operating system does
the work. In addition, maintaining one system is easier
than maintaining a bunch of smaller systems.
However, SMP has many hurdles to overcome. First,

large-scale SMP machines are expensive. Second,
many operating systems such as NT have flawed
thread schedulers and RAM limits that restrict the
amount of CPUs available. Third, SMP does not
guarantee availability and fault tolerance.
• Clustering: Clustering lets you link separate
computers (or nodes) to work as a single system. If
one of the two clustered servers fails, the functioning
server picks up the load. In addition to high
availability, clustering helps achieve high
performance. However, because clusters have looser
processor-to-processor communications than SMP
systems, more care must be taken to structure their
workloads for scalable performance.
Another critical issue regarding DSS server is the

internal parallel and multithreaded program. Here we
propose two approaches. One is to use the standardized
distributed object computing technologies such as
CORBA, DCOM and Microsoft .Net. The other is to use
SOAP (Simple Object Access Protocol). Many technical
details of these technologies can be found in [3], [4], [5].

3.2. Low-cost DSS client

In general, DSS clients are those personal terminals such
as PDAs and cell phones with limited computing and
storage capabilities. This prevents them from performing
tasks that consume lots of resources. A DSS client needs a
speech database whose size can be as large as several
hundred megabytes (16k, 16bits, pcm). However, for most
DSS clients, the size of the speech database should be
constrained to 10 megabytes or less.

A solution to this problem is to employ one of the
speech coding algorithms to compress the speech database.
A wide range of speech coding algorithms standardized by
the International Telecommunications Union (ITU) are
available (such as G.721, G.723, G.728, G.729, etc.).
They span the bitrate from 2.4 kbits/s to 64 kbits/s. Thus,
the best compression rate achieved can be up to 1/100.

If the modern corpus-based speech synthesis technique
is used in DSS systems, the speech database is far larger,
e.g., 2-3 gigabytes. It is impossible to satisfy the storage
limitation of DSS clients if we solely rely on speech
coding algorithms. Recently, the Speech Lab at University
of Science and Technology of China has proposed a
scalable algorithm for tailoring the speech database [6].
With this algorithm, researchers have successfully reduced
the size of a speech database from 2 gigabytes to 100
megabytes. However, the loss of speech naturalness is tiny
and thus can be neglected.

In practice, the above two solutions are jointly used to
achieve best compression rate.

3.3. XML data compression

I - 734

➡ ➡

A data format for structured document interchange on the
Internet, XML has many excellent features such as
human/machine readability, platform independence and
extensive compatibility. However, because XML contains
extra structural information besides the original data, data
redundancy is inevitable and will affect data transmission
rate if network bandwidth is critical. XML-based DSSML
documents act as data exchange for DSS systems. Thus,
they need to be compressed before being transmitted on
the network for the efficient use of network bandwidth.

Many a researcher has conducted in-depth research on
XML compression. Alain Trottier introduced an approach
called "zxml". Zxml simply eliminates duplicate/redundant
tags and adds a header and template area to lists tag names
and values.

Xmill, which was developed by the University of PA
and AT&T Labs, groups data items according to their
elements. Each group is then compressed separately via
gzip.

XMLZip reduces the size of XML files while
retaining the accessibility of the DOM API, allowing
applications to access data in its compressed form.

WAP Binary XML (WBXML) defines a compact
binary representation of XML for transmission of WML
content. WBXML preserves element structure but the
encoding process removes DOCTYPEs, Comments,
INCLUDE/IGNORE sections.

Millau defines an encoding format that extends
WBXML. Millau preserves the XML structure and
compresses the data separately.

We have conducted experiments to test the speed and
compression rate of the above algorithms. The results
indicate that Xmill obtains the best compression rate while
zxml obtains the best speed. In DSS systems, the selection
of XML compression algorithm depends on practical
requirements.

4. OPTIMIZATION CONSIDERATIONS OF DSS
SYSTEMS

A robust DSS system should be optimized to meet
different practical requirements. In this section we will
make several optimization suggestions for future
considerations.

4.1. Data security

Data exchange between DSS servers and clients is in the
open XML format. This may cause big problems in
security. A number of security technologies including
authentication protocol, encryption algorithm and digital
signature can be employed in implementing DSS systems.
However, tradeoffs between the security level and system
performance should be seriously considered.

4.2. QoS control

QoS (Quality of Service) guarantees low delay, low error
rate and high throughput of DSS systems. We recommend
that DSS systems define several QoS parameters, based on
which the underlying TCP/IP protocol can negotiate with
RSVP, MPLS or RTP to establish the optimal route for
connection. Once the connection is established, the
expected bandwidth can be obtained.

4.3. Load balancing between DSS server and client

The LBP handles load balancing among DSS servers. We
may need a different mechanism to handle the load
balancing between DSS server and client. DSSML is a
hierarchical representation of prosodic features. Different
layers of DSSML contain sufficient information for DSS
clients but require different computing capabilities on
servers and clients. We can determine in real time which
layer of DSSML is to be used with a dynamic arbitration
algorithm. Main consideration factors are the computing
capability of individual client, the bandwidth of currently
established connection and the sever workload.

5. CONCLUSION

This paper presents a comprehensive study on DSS. Based
on client-server model, DSS architectures are detailed in
server, client and network parts. Feasible implementation
mechanism and future optimization considerations of DSS
systems are provided. DSS is a novel field of study and a
challenging work involving many research and
engineering topics. Our future research will focus on
arbitration algorithms for load balancing.

6. REFERENCES

[1] WeiQi Zhang et al, “The Study on Distributed Speech
Recognition System,” in Proc. 25th IEEE Int. Conf. Acoustics,
Speech, and Signal Processing, vol. 3, pp. 1431-1434, 2000.

[2] Jie Wu, Distributed System Design, CRC Press, Boca Raton,
FL, 1998.

[3] The World Wide Web Consortium, http://www.w3.org.

[4] P. Emerald Chung et al, "DCOM and CORBA Side by Side,
Step by Step, and Layer by Layer," in C++ Report, Jan. 1998,
http://www.research.microsoft.com/~ymwang/papers/HTML/DC
OMnCORBA/S.html.

[5] Homepage for Microsoft .Net, http://www.microsoft.com/net.

[6] Zhi-Wei Shuang, Yu Hu, Zhen-Hua Ling and Ren-Hua
Wang, “A Miniature Chinese TTS System Based on Tailored
Corpus,” in Proc. 7th Int. Conf. Spoken Lang., ICSLP 2002, pp.
2389–2392, 2002.

I - 735

➡ ➠

