AN ADVANCED TEXT-TO-SPEECH SERVER SYSTEM BASED ON SOAP PROTOCOL

XU Yingying', TANG Hao® and ZHANG Peiren’

'Department of Automation
*Department of Electronic Engineering and Information Science
University of Science and Technology of China, Hefei, Anhui, 230026, P.R.China
yingerxu@mail.ustc.edu.cn, {tangh, przhang}@ustc.edu.cn

ABSTRACT

The traditional Text-to-Speech (TTS) server system is an
interactive service platform for voice generation within an
Intranet operating over TCP/IP protocol. In the
information era, the ever-expanding Web services require
that the service scope of TTS server systems enlarge to
the whole Internet. This paper proposes an advanced TTS
server system binding with the Simple Object Access
Protocol (SOAP) and describes its architecture and
implementation. The performance data comparison by
experiments is presented in the end of the paper.

1. INTRODUCTION

As organizations try to reinvent themselves as “e-
businesses,” they find it necessary to offer their customers
whole new channels of communication including e-mail,
text chat, Web call-back requests, voice over IP, etc. Such
real-time Web-based interaction is the key to successful e-
commerce initiatives [1]. Within these applications and
utilities, the voice application at enterprise level has been
attracting more and more attention for not only a new
channel to deliver information but also a new business
model around the world. The traditional Text-to-Speech
(TTS) server system is such an interactive service
platform for voice generation within an Intranet operating
over TCP/IP protocol, through which the enterprises can
centralize the processing of all customer requests for TTS
service and provide a new channel of communication in
real time.

Figure 1 shows a common framework of the
traditional TTS server system. The traditional TTS server
system generally employs a client-server architecture. The
client side consists of a variety of speech applications,
with each application requesting TTS service as its
scripting dictates. One or more TTS servers connected via
TCP/IP handle these requests, returning voice data
corresponding to the text that was handed.

0-7803-7663-3/03/$17.00 ©2003 IEEE

I-728

TTS Server Cluster
(=] i [

Iy =
(I

TCP/1P

Ethernet Switch

TTS Client TTS Client TTS Client
TTS Server Cluster
T L=

Router

Ethernet Switch
—

TTS Client

Figure 1. Common framework of traditional TTS
server system

TTS Client TTS Client

As can be seen from Figure 1, the traditional TTS
server system runs within the Intranet of a single
enterprise. However, in current information era, the ever-
expanding Web services urge more and more companies
to enter the market offering their products as service
solutions. Given these circumstances, it will no longer be
sufficient to solely provide the TTS service for an
appointed enterprise. Instead, the challenge is to evolve it
to Web services to satisfy a broad range of requirements,
including all kinds of cross-platform integrations. In order
to meet this new challenge and improve customer service,
we have developed an advanced TTS server system based
on the Simple Object Access Protocol (SOAP).

ICASSP 2003

This paper is organized as follows. Section 2
introduces the SOAP protocol, the reasons why we used
SOAP as the underlying infrastructure of our system and
the binding fundamentals of SOAP. Section 3 describes
the system implementation mechanism and provides the
performance data comparison between our system and a
traditional TTS server system based on experimental
results.

2. INFRASTRUCTURE

SOAP is a way for a program running in one kind of
operating system (such as Windows 2000) to
communicate with a program in the same or another kind
of operating system (such as UNIX) by using HTTP and
XML as the mechanisms for information exchange [2].
SOAP supports XML document exchange and provides a
convention for Remote Procedure Call (RPC) using XML
messages. In fact, SOAP is a platform-independent access
protocol.

2.1. Why use SOAP

The use of SOAP in our system as its underlying
infrastructure can make communication between client
and server objects via HTTP, an application-level protocol
for distributed and collaborative hypermedia information
systems [3]. The actual network conversation is encoded
in XML, a platform-independent and robust makeup
language [4]. All these offer tremendous advantages to
software-to-software communications.

Because SOAP messages can be carried over the
HTTP protocol, they can easily pass through firewalls.
Unlike other distributed object models that rely on
dynamically assigned ports, SOAP can use HTTP’s
standard port for transmitting data. SOAP messages can
be easily filtered at a firewall because the header
information can be mandated to contain meta-information
of the interaction that is being made [5]. This saves a
firewall application from having to read the entire XML
body to manage the request.

Moreover, SOAP is a more easily implementable
platform-independent access protocol. SOAP is similar to
DCOM and CORBA in that it provides an RPC
mechanism for invoking methods remotely. However,
SOAP differs in that it is a protocol based on open XML
standards and XML document exchange rather than being
an object model relying on proprietary binary formats.
The SOAP gateway performs a similar function to DCOM
and CORBA stubs — translating messages between the
SOAP protocol and the language of choice. As a result,

SOAP offers vendor, platform and language independence.

With SOAP, developers can easily bridge applications
written with COM, CORBA or Enterprise JavaBeans™.

2.2. How to bind SOAP

Microsoft SOAP Toolkit provides a wizard that exports
the methods of a COM object using SOAP. The COM
objects may be written using Visual C++ or Visual Basic.
The wizard generates deployment files including the Web
Service Description Language (WSDL) file that defines
the interface [6].

The WSDL is an XML-based language for describing
the network services offered by the server. Essentially, a
WSDL document describes how to invoke a service and
provides information on the data being exchanged, the
sequence of messages for an operation, the protocol
bindings and the location of the service [7]. A WSDL
document defines services as a collection of endpoints,
but separates the abstract definition from the concrete
implementation. Messages and port types provide abstract
definitions for the data being exchanged and the
operations being performed by a service. A binding is
provided to map to a port, usually consisting of a URL
location and a SOAP binding.

3. SYSTEM IMPLEMENTATION

In our system, we have developed a SOAP-enabled COM
object to provide TTS service according to the TTS
Application Programming Interface (API). The TTS
service can be interpreted by a simple model: First, the
client connects to the server on the HTTP default port
number. Second, the client sends text to the server
through an HTTP POST request. Third, the server
processes the request, synthesizes the text and then sends
back the generated voice data to the client. Finally, the
client invokes a close action to ensure that the connection
between the client and the server is destroyed.

To use the COM component to communicate between
the TTS server and various clients, we first need to create
a WSDL file that describes this COM component on the
Web server that runs Microsoft Internet Information
Services (IIS). Microsoft SOAP Toolkit provides all the
tools to create WSDL files for COM components [8].
Having the WSDL and related listener files on the Web
server, the SOAP-enabled COM component becomes a
TTS service that the remote clients can access.

3.1. Architecture

The architecture of our client-server based TTS server
system is represented in Figure 2. The figure interprets
how the objects communicate with one another using
Internet connection. Since SOAP is an XML-based
protocol, an XML parser is needed on both the client and
the server.

I-729

- z
XML : ; 2
Parser @« | :

o i : o
% i Request | =

U =3 B! F el I

c—— . Calldirectly | & |: ip" Mapping <

(= g | ‘ Tool

<

: {Call
! Client Application ~~ ; {hrough :
; (TTSCOM Client) _ i PTo%Y -

y ~\ Respunsef
7~ Proxy Object | \ : :
[| H ;
_ | wspL - 4

N

SN

Server Application
(TTS COM Object) !

Figure 2. Architecture of our TTS server system

As shown, on the client side, the client application
can either call the methods on the server object directly or
call through a proxy object to hide all SOAP details. The
proxy object is a layer that can make converting existing
applications from COM to SOAP easy and give the client
application the impression that it is calling the methods on
the server object. The proxy object is responsible for
serializing the parameters, generating SOAP messages,
parsing and de-serializing the response messages and
returning the native data types. Figure 3 shows the code
snippet to initialize the proxy object.

CString Path;

GetModuleFileName (AfxGetApp () —>m hInstance,
Path. GetBuffer (MAX PATH), MAX PATH);
Path. ReleaseBuffer () ;

Path = Path. Left (Path. ReverseFind(_ T(\\’))+1);

CString WsdlFile = Path + T("TTSService.wsdl”);
CString WsmlFile = Path + T("TTSService.wsml”);

try
m TTSProxy. Initialize (Wsd1File, WsmlFile);
catch(com error Error)

DisplayError (T (‘Cannot initialize TTS Service prox¥), Error) ;
EndDialog(0) ;
return TRUE;

Figure 3. Initialization code of proxy object

On the server side, the SOAP listener takes charge of
reading the incoming SOAP request, building a SOAP
response message that contains the result of the operation
and sends this message to the client. We can use different
mapping tools to map SOAP requests in any format we
like as long as both the client and the server agree on it.
The SOAP messages are wrapped according to the
methods that the TTS COM object provides:

e TTSConnect - Connects to the TTS service and gets a
handle <H> identifying the session

e TTSDisconnect - Destroys the session identified by
<H>

e TTSSynthText - Requests that TTS service accept the
text and return a status code <S>

e TTSFetchnext - <S>=1 indicates that there are still
more voice data available on the server that can be fetched
by continuously invoking this method. This method also
returns a status code <S> representing the same meaning
as it does in TTSSynthText

e TTSSetParameters - Sets synthesis parameters such
as speaking rate, pitch, volume, etc.

* TTSGetParameters - Gets synthesis parameters

¢ TTSClean - Gets rid of the remaining voice data on
the server if a normal session is interrupted

3.2. WSDL description

WSDL provides an interface definition language for
SOAP. From Figure 4, we can see the components of a
WSDL document and their relationships.

)

Typen] ot
A
Custom type Input Message]
o
O Binding

L—T |

. | part
xsd: int |
- // Output Message
oo |

XSD built-in \ operation /
N
rtType

Service

Figure 4. Components of WSDL document

In our system, we defined a TTSData complex type
for the message part. The message part describes the
logical contents of the messages being communicated.
Figure 5 shows the SynthText request and corresponding
response message.

<{message name= TTS. SynthText’ >

<{part name= usertext’ type= xsd:string’ />

<part name=" pbIsSynthText’ type=" xsd:boolean’ />
{/message>
<{message name= TTS. SynthTextResponse >

<{part name=" result’ type=’" xsd:TTSData’ />
{/message>

Figure 5. SynthText request and response message

In the portType part, a set of operations and the
messages involved with each of the operations are
described like this:

I-730

<{portType name=" TTSSoapPort’ >
{operation name= SynthText’
parameterOrder="usertext pbIsSynthText
{input message= wsdlns:TTS. SynthText’ />
<output message= wsdlns:TTS. SynthTextResponse’
{/operation>

<{/portType>
Figure 6. portType part in WSDL document

When a client sends a SOAP request to a TTS server
requesting an operation, it must identify the service, a port
in the service and the operation it wants to execute along
with the input parameter values. The following code
fragment shows the service element.

{service name= TTSservice’ >
<{port name= TTSSoapPort binding= wsdlns:TTSSoapBinding >
{soap:address location="http://MSSoapTTSServer/
TTSService/Res/TTSservice. WSDL” />
{/port>
{/service>

Figure 7. Service part in WSDL document
3.3. Performance comparison

To test the performance of our newly established TTS
server system, we have performed experiments on it as
well as on a traditional TTS server system that shares the
same TTS engine. Each of the two systems ran on a P-III
550 server with 256M RAM. We set up 30 clients
(ordinary PCs) connected to the server via 100M Ethernet.
In our tests, we measured the durations between the time
when the clients began to send text to the server and the
time when they began to receive the voice data. The text
materials used include 1000 20-byte-or-so sentences, 500
800-byte-or-so poems and 200 5000-byte-or-so articles
consisting of many kinds of symbols like numerals,
punctuations, English words, etc. Table 1 contains the
performance data (30-way average time) of the two
systems according to different kind of text.

System Sentences Poems Articles
Using
TCP/IP 4.705 2.462 2.970
Binding
SOAP 5.710 2.979 3.364

Table 1. Response time (in second) of two systems

Contrast to the traditional TTS server system using
TCP/IP, the delay of our system is about 400ms more than
that of the traditional system on average. Considering that
the actual data transfer time is much less than the voice

generation time on the server, we conclude that by
binding SOAP we haven’t degraded system performance.

4. CONCLUSION

The best features of SOAP are the clarity of the messages,
the firewall passing capability and the easy RPC support.
Based on SOAP protocol, our TTS server system can
provide TTS service in the Internet with improved
interoperability. To embrace different client systems, we
can use different mapping tools to map SOAP requests
within ASP, JSP, CGI, SERVLET, etc. In the future, our
research will focus on conducting data compression
within the SOAP protocol and further enhancing the
flexibility and reliability of our TTS server system.

5. REFERENCES

[1] Donald E.Brown, “The Interaction Center Platform White
Paper,” http://www.inin.com.

[2] “A Definition of Web Services,” http://www.integra.net.uk
/services, July 2002.

[3] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, T. Berners, Lee,
“Network Working Group Request for Comments: 2068,”
http://www.cis.ohio-state.edu/cgi-bin/rfc/rfc2068.html, January
1997.

[4] Timothy M. Chester, “Cross-Platform Integration with XML
and SOAP,” IT Professional, IEEE, Volume: 3 Issue: 5, Page(s):
26 -34, Sept.-Oct. 2001.

[5] Yasser Shohoud, Learn XML Web Services Development,
http://www.learnxmlws.com/book/chapters.

[6] Rob Caron, “Develop a Web Service: Up and Running with
the SOAP Toolkit for Visual Studio,” MSDN Magazine,
http://msdn.microsoft.com/library, Aug. 2000.

[7] Microsoft Corporation, “Help of SOAP Toolkit 3.0 Beta 1,”
http://msdn.microsoft.com/downloads, 2002.

[8] Microsoft SOAP Toolkit, http://msdn.microsoft.com/xml /def
ault.asp.

I-731

