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ABSTRACT

Voice conversion techniques attempt to modify speech signal so
that it is perceived as if spoken by another speaker, different from
the original speaker. In this paper, we present a novel approach
to perform voice conversion. Our approach uses acoustic models
based on units of speech, like phones and diphones, for voice con-
version. These models can be computed and used independently
for a given speaker without being concerned about the source or
target speaker. It avoids the use of a parallel speech corpus in the
voices of source and target speakers. It is shown that by using the
proposed approach, voice fonts can be created and stored which
will represent individual characteristics of a particular speaker,
to be used for customization of synthetic speech. We also show
through objective and subjective tests, that voice conversion qual-
ity is comparable to other approaches that require a parallel speech
corpus.

1. INTRODUCTION

Voice conversion is concerned with the transformation of speech
signal in the voice of a source speaker to that of a target speaker.
A suitable performance measure must determine how close the
converted speech is perceived to the speech of the target speaker.
To address the problem in its entirety, it is necessary to consider
various dimensions of speech including pitch, energy modulation,
stress, rate of speaking, spectral envelope and style of speaking.
Some of these dimensions are rather qualitative measures of speech.
Morever, some of them are more important than others in the con-
text of voice conversion. Therefore, classically the problem has
been attempted in two parts. The first part relates to spectral enve-
lope conversion while the second part relates to prosodic modifi-
cation of the speech signal.

In this paper, we will mainly focus upon spectral envelope con-
version and the implications of the proposed approach towards cre-
ation of “voice fonts”. Current voice conversion methods are lim-
ited by the requirement of a “parallel” speech corpus in the voices
of source and target speakers. Here, parallel corpus means that
the same set of words or sentences are uttered by both speakers.
This is required to learn a mapping between the source and target
spectral envelopes. Due to this requirement, the mapping function
is always coupled with a specific source-target speaker pair, and
has to be retrained for every new pair. We propose a novel ap-
proach for spectral envelope conversion using phone and diphone
based acoustic models as a step towards overcoming this limita-
tion. Some of the applications of ”voice fonts” will be in person-

alized text-to-speech synthesis and personalized multimedia mail,
very low bit rate speech coding and speech-to-speech translation.

Prosodic modifications in the form of time and pitch scal-
ing have been attempted through various sinusoidal and harmonic
models [1, 2, 3]. Some of the previous attempts for spectral enve-
lope conversion can be found in [4, 5, 6, 7, 8]. In one of the earli-
est attempts, Abe et. al in [4], used a mapping codebook method
in which the source speaker’s code vector is replaced frame-by-
frame with corresponding code vector of the target speaker. Vec-
tor Quantization (VQ) is applied to partition the acoustic space
of source and target speakers to get these code vectors. Later in
[5], a segment-based approach is used in which speech segments
are used as voice conversion units to capture dynamic characteris-
tics of the speaker individuality. The incoming speech signal from
source speaker is segmented into speech units by using a speech
recognizer and then these segments are replaced with correspond-
ing speech segment of the target speaker using a table-lookup ap-
proach. In [6] Valbret et. al. use Linear Multivariate Regression
(LMR) and Dynamic Frequency Warping (DFW), to convert the
spectral envelope. They have used pitch-synchronous overlap add
analysis (PSOLA) for prosodic modifications. In [7], Yannis et.
al. have used a probabilistic conversion function to convert the
spectral envelope of voiced frames of speech to that of the tar-
get speaker. They have used Harmonic + Noise Model (HNM)
for time and pitch scale modifications of speech [3]. They first
partition the acoustic space of the source speaker with Gaussian
Mixture Models (GMM) and then learn the parameters of the con-
version function using a parallel speech corpus in source and target
speaker’s voices.

Rest of the paper is organized as follows. We describe our
approach in Section 3. However, Section 2 first describes how this
approach can be used to create voice fonts. Various experiments
are described in Section 4. We discuss the results corresponding to
these experiments in Section 5. Finally we conclude in Section 6.

2. VOICE FONTS

The Webster’s dictionary defines “font” as “an assortment or set of
type all of one size and style”. In the same token, we define “voice
font” as “a set of descriptors of a person’s voice”. Just as text fonts
make the text appear in a particular style, voice fonts will make the
speech sound in a particular individual’s voice. Some of the most
important descriptors of voice fonts will comprise spectral enve-
lope for acoustic units and prosodic features such as fundamental
frequency and rate of speaking [9].
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Fig. 1. Creation of Voice Fonts

The motivation for voice fonts is to create a compact repre-
sentation of the speaker individuality, which can be used to create
personalized voice from speech in another voice. This will require
easy extraction and storage of speaker specific descriptors from the
speech signal. Voice fonts will also allow the use of the underly-
ing descriptors as independent input into a text-to-speech synthesis
system to synthesize speech in the voice of the particular speaker.
The standardization of the descriptors constituting the voice font
of a person will be an important goal to realize the potential appli-
cations of voice fonts.

Voice fonts will allow an independent representation of the
spectral envelope which can be used for voice conversion without
having to learn a mapping in advance between the source and tar-
get envelopes. By modifying the underlying descriptors of voice
fonts to match with those of a target speaker, speech signal can be
synthesized in the target speaker’s voice. Our approach attempts
to achieve this goal by using speech units based acoustic models
for voice conversion.

3. PROPOSED APPROACH

As mentioned, most of the approaches proposed in the literature,
require a parallel speech corpus in the voices of source and tar-
get speakers to learn a mapping between their respective spectral
envelopes. This parallel speech corpus is created by asking the
source and target speakers to speak the same words or sentences.
Due to this requirement, the mapping function is always associated
with a specific source-target pair and has to be retrained for every
new pair.

We propose to partition and model a speaker’s acoustic space
with explicit speech units, like phones or diphones, instead of mod-
eling it with vector quantization or Gaussian Mixture Models. The
spectral envelope of each such speech unit can then be converted
into the corresponding spectral envelope of the target speaker for
the same speech unit. This method of spectral envelope conver-
sion does not require a parallel speech corpus to learn a mapping
between source and target speakers. Instead, the spectral envelope
of the speech units can be modeled from independent speech cor-
pus for a particular speaker.

3.1. Extraction of individuality features

The creation of voice fonts, by extracting the underlying descrip-
tors, is schematically shown in Fig. 1. We in particular focus upon
three of these descriptors in this work, viz., pitch frequency, spec-
tral envelope of various acoustic units and average speaking rate.

We record continuous speech utterances from a speaker whose in-
dividuality features are to be computed. Pitch frequency is com-
puted for every voiced frame using a standard autocorrelation based
pitch detector, described in ITU-T standard G.729. Average of
the pitch frequency so computed constitutes one descriptor of the
voice font for the speaker. For spectral envelope representation, we
use 16 dimensional Mel-Frequency Cepstral Coefficients (MFCC)
extracted from a 16 kHz speech signal by discrete regularized cep-
strum method using a warped frequency scale [10]. The speech ut-
terances, spoken by the speaker, are phonetically aligned by using
Hidden Markov Models (HMM) of a speech recognizer through
Viterbi alignment. All the MFCC vectors corresponding to a par-
ticular phone are then grouped together using these alignments
and modeled through Gaussian Mixture Models (GMM), in gen-
eral. GMM models the distribution of an observed vector �, a
�-dimensional MFCC vector in this context, as a weighted sum of
several Gaussian distributions. This can be represented as follows:
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where�������� denotes �-dimensional normal distribution with
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In (1), the terms �� are normalized positive weights such that��
��� �� � � and �� � 
. The parameters �,�, and �� are com-

puted using the classic Expectation Maximization (EM) algorithm.
The conditional probability, � ������, that a vector � belongs to a
phone �� can be computed as follows:
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where �� represents probability of occurrence of phone �� and �
denotes the total number of phones. �� are computed from the
aligned speech database of the speaker.

Note that GMM is not being used to partition the acoustic
space of the speaker as in [7]. In our method, acoustic space of
a speaker is partitioned explicitly into phones using the alignments
and GMM is used for finer modeling of each phone. When M=1,
GMM reduces to computing the mean and covariance matrix of
the MFCC vectors for the given phone. Note that although the
above procedure has been described for phone based speech units,
the same procedure will be used for diphones, or allophones in
general. We have used phones and diphones in our experiments,
described in Section 4. GMM parameters (�, �,�) and the proba-
bilities of occurrence �� for all the phones, combined together will
represent the second descriptor of the voice font for the speaker.

The third descriptor of the voice font, viz., average rate of
speaking, is not incorporated in the current model. We set it manu-
ally for the time scaling of the speech signal in order to match with
that of the target speaker.
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Fig. 2. Voice conversion procedure

3.2. Voice conversion

We perform voice conversion from one speaker to another speaker
by converting three descriptors of the voice fonts as described ear-
lier in this section.

We have implemented an integrated signal processing module
which converts these three descriptors of the incoming speech sig-
nal. This module has been depicted in Fig. 2. It uses HNM to an-
alyze the speech signal. HNM assumes the speech spectrum to be
divided into two bands separated by maximum voiced frequency.
The lower band is modeled as a sum of harmonically related sinu-
soids with slowly varying frequency and amplitude, and the upper
band is modeled by modulated noise. This can be represented as

�	�
� �
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�

���
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where���
� is the fundamental frequency, ���
� are the harmonic
amplitudes and ��
� is number of harmonics in the voiced band of
the speech signal at time 
. ��
� models the noise part of the signal.

For every analysis frame, harmonic amplitudes �� are com-
puted using ���
� by least square optimization between the actual
speech signal and the harmonic part of �	�
�. The noise part is
modeled by an all-pole filter of order 15, whose coefficients are
extracted from a 40 ms speech signal centered around the analy-
sis frame. More details about this procedure can be found in [3].
Spectral envelope corresponding to the voiced part of speech sig-
nal is obtained in the form of discrete MFCC vector by using the
approach presented in [10].

To convert the spectral envelope of the input speech signal into
that of the target speaker, we use following conversion function

�
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In (5), �
 and �
 represent the source and target MFCC vec-
tors, �
�� , �
�� , �
�� and �
�� represent the mean vector and co-
variance matrix corresponding to GMM component � of phone
(diphone) � for the source and target speakers respectively. The
probability, � �����
�, is given in (3). Note that � is the num-
ber of GMM components to model a phone and � is total number
of phones. In general, � � � , so that only first � most likely
phones are used, corresponding to �
.

It can be noticed that this conversion function is motivated by
the conversion function presented in [7], given as follows
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where ��� and ��� are mean and covariance matrix of GMM compo-
nent��. Parameters �� and �� are learned through least square op-
timization performed over mapped source and target MFCC vec-
tors, learned from a parallel speech corpus.

The function (5) used in the proposed approach differs from
(6) in following aspects. Since it is based upon explicit phone
acoustic models, it does not require a parallel speech corpus to
learn its parameters, (�� �����). This makes it suitable to be
used for voice fonts. Furthermore, to compute its parameters, (6)
involves the inversion of very large matrices which makes it com-
putationally very expensive. This problem does not arise in (5).

After converting the spectral envelope, pitch and time scaling
are performed using the HNM framework. A constant pitch scal-
ing factor is obtained by dividing average pitch frequency of the
target speaker with that of the source speaker. This information
can easily be extracted from the voice fonts of the source and tar-
get speakers as pitch frequency is a descriptor of voice fonts. A
constant time-scaling factor is used to match the average speaking
rates of source and target speakers.

4. EXPERIMENTS

We performed voice conversion experiments on continuous sen-
tences to measure the robustness of the proposed approach and
compare its performance with other approaches.

About 30 minutes of speech was recorded from two male speak-
ers in the form of continuous Hindi sentences. About half of this
data was recorded in the form of a parallel speech corpus where
both the speakers spoke same sentences, while in the other half,
they were given different sentences to speak. All the sentences
were Viterbi aligned with an HMM based Hindi speech recog-
nizer which, with an N-gram language model, produces about 88%
word recognition rate on a general dictation task [11]. The parallel
speech corpus, comprising of about 22,000 aligned and mapped
MFCC vectors and 61 component Gaussian Mixture Models, was
used to train the function, given in (6), for the speakers. The
second half of the database was used to create voice fonts com-
prising of phone and diphone based GMM models and average
pitch frequency independently for both the speakers. For phone
based models we used 61 phones (number of phones in the speech
recognition system), and for diphone based models, we used 335
diphones extracted from the database by considering only those di-
phones which had more than 100 vectors aligned to each of them.
For simplicity only one component per GMM was used in both the
models. To reduce the computations further, in all the experiments
individual cepstral coefficients were assumed to be uncorrelated,
resulting in diagonal covariance matrices.

For a quantitative comparison, we computed spectral envelopes
of the source, target and converted speech sentences over aligned
frames. The envelope is based on an LPC all-pole filter, whose co-
efficients were computed from 40ms of voiced speech. This was
performed for various phonetic segments. Spectral Distortion for
these envelopes was computed using the following expression:
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I - 722

➡ ➡



where ��
� and ���
� represent the spectral envelope of the target
and converted speakers respectively.

We performed listening tests in order to measure relative per-
ceived quality of the synthesized speech sentences. In the first test,
called Degradation Category Rating (DCR), we asked the subjects
to grade the synthesized speech on a scale of 1 to 5, representing
decreasing level of degradation from the target speech. In second
test, we call opinion test, we asked the subjects to grade the syn-
thesized speech on a scale of 1 to 10, considering the closeness of
the speaker individuality of the synthesized speech with that of the
target speaker. These listening tests involved twelve synthesized
sentences and six subjects.

Results corresponding to the above experiments are discussed
in Section 5. Some of the synthesized sentences can be accessed
at http://in.geocities.com/ashish verm/conversion.html.

5. RESULTS AND DISCUSSION

The spectral envelopes for four aligned voiced frames are shown
in Fig. 3. The average spectral distortion ����, corresponding to
the frames are listed in Table 1. It can be noticed from the results
that the proposed approach, using phone and diphone based acous-
tic models, performs similar to that using function (6), (shown with
’+’ symbol). The spectral distortion is reduced by 2 to 4 dB, which
is about 33% to 68% relative improvement, from the initial distor-
tion between source and target speaker. In some cases, our ap-
proach performs better than (6).
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The results corresponding to the subjective tests are shown in
last two rows of Table 1. As can be noticed from these results,
the perceived quality of the synthesized speech using both the ap-
proaches are quite similar.

6. CONCLUSION

We have proposed creation of voice fonts which can be used to per-
sonalize speech for an individual for various applications. We have
shown the viability of this concept by proposing an approach for
spectral conversion which makes use of acoustic unit based mod-
els and hence avoids the requirement of a parallel speech corpus.

Initial Trained Phone Diphone
Spec. Dist.(dB) 9.17 5.53 5.51 5.13
Spec. Dist.(dB) 6.30 4.22 3.48 3.50
Spec. Dist.(dB) 5.84 2.11 1.84 1.85
Spec. Dist.(dB) 7.47 3.09 3.08 3.03

DCR score - 3.25 3.25 3.20
Opinion Test - 6.41 6.11 6.31

Table 1. Objective & subjective test resuls; Initial: between source
and target, Trained: conversion function (6), Phone: phone mod-
els, Diphone: diphone models

We have shown through various experiments that the quality of the
converted speech is as good as using a mapping based approach.
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