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ABSTRACT

In this paper we describe the current status of the trainable
text-to-speech system at IBM. Recent algorithmic and database
changes to the system have led to significant gains in the out-
put quality. On the algorithms side, we have introduced statisti-
cal models for predicting pitch and duration targets which replace
the rule-based target generation previously employed. Addition-
aly, we have changed the cost function and the search strategy, in-
troduced a post-search pitch smoothing agorithm, and improved
our method of preselection. Through the combined data and algo-
rithmic contributions, we have been able to significantly improve
(p < 0.0001) the mean opinion score (MOS) of our female voice,
from 3.68 to 4.85 when heard over speakers and to 5.42 when
heard over the telephone (seven point scale).

1. INTRODUCTION

The IBM text-to-speech system is composed of three major
components. a front-end which does text normalization and pro-
nunciation generation, a prosody module which generates pitch,
duration, and energy targets, and a back-end which searches a
large database to select segments which minimize a cost function,
concatenates them, and optionally performs signal processing on
the resulting synthetic speech. All three major components are
undergoing continual improvements. In this paper we describe
improvements made to the prosody module, to the back-end, to
the database which the back-end searches, and to the preselsec-
tion method for offline selection of segments from that database to
be considered in the search. All of the agorithmic improvements
mentioned, as well as the procedures we followed for collecting
new databases, will be described.

2. RECENT ALGORITHMIC IMPROVEMENTSIN THE
IBM TTSSYSTEM

The previous version of our concatenative synthesis system is
described in detail in[1], and summarized briefly here.

During synthesis, text processing, text-to-phone conversion,
and phrase boundary placement are performed by an independent
rule-based front-end. Previoudly, this rule-based front-end was
also used to generate duration targets and FO targets; new statisti-
cal methods for predicting these prosodic targets have been imple-
mented to replace the rule-based targets. The results of the front-
end processing and the prosodic target generation are passed, one
phrase at a time, to the back-end, which generates the synthetic
speech by selecting units to minimize a cost function. The sys-
tem uses subphoneme-sized segments as its basic synthesis units,
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which correspond to states in a hidden Markov model. Decision
trees [2] for context definition are used in conjunction with a dy-
namic programming segment search.

We have developed several algorithms, described below,
which enhanced the quality of the synthetic speech produced by
the system. We replaced the rule-based system for generating FO
contours with a statistical approach using a decision tree. We also
replaced the rule-based system for producing duration targetswith
adecision tree approach. We changed the cost function used in the
segment search aswell as the search strategy itself. We introduced
an agorithm for smoothing the pitch contour which results from
concatenating the segments selected for synthesis. Finally, weim-
proved our algorithm for preselecting segments to be considered
in the search.

2.1. FOTarget Estimation

We replaced the rule-based system for generating pitch target
contours with a decision tree model. In this methodology, an end
pitch and a delta pitch for each syllable are predicted from a set of
features gathered from the text. Featuresinclude:

e Lexica stressof the current syllable

e Phrase level stress of the current word, as predicted by the
rule-based front-end processor

e Distance of the current word from the beginning of the cur-
rent phrase

e Distance of the current word from the end of the phrase
e Part of speech of the current word

For each syllable, the feature vector associated with that sylla-
ble along with the feature vectors associated with the two syllables
to the left and to the right are concatenated, and associated with
an observation vector consisting of log(p) and Ap, where p isthe
pitch in Hertz at the end of the syllable nucleus. From these fea-
ture vectors and observations, adecision tree is built to maximize
the likelihood of the observations.

During synthesis, the same features are assembled and
dropped down the tree for each syllable. The mean pitch and mean
deltapitch at theresulting leaf are used to construct the target pitch
contour. The estimated end pitch and the delta pitch of the sylla-
ble are used to calculate atarget start pitch and end pitch for each
segment, which are used to evaluate the pitch target component of
the cost function for each database segment under consideration
for selection.

The new pitch targets, when accompanied by a corresponding
change to the cost function which is described in section 2.3, lead
to asignificant improvement in performance as shown in table 1.
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2.2. Target Duration Estimation

Anaogously to the FO contour generation, we have replaced the
rule-based approach for generating duration targets with adecision
tree model. For each phone to be synthesized, a set of features are
derived from the text. Features include:

e The phoneme identity, as well as of the two phones to the
left and to the right of the current phone

e The voicing (voiced/unvoiced) of the current phone and of
the two phones to the left and to the right of the current
phone

e The broad class of the current phone (vowel, semi-vowel,
fricative, nasal, plosive) as well as of the two phones to the
left and to the right of the current phone

e Thetotal number of syllablesin the word to which the cur-
rent phone belongs

e The syllable number of the syllable to which the current
phone belongs within the word

e Thetotal number of syllablesin the word minus the current
syllable number

e Thelexical stress of the current syllable

e The phrase-level stress of the current word, as predicted by
the rule-based front-end

e The distance of the current word to the beginning of the
current phrase

e Thedistance of the current word to the end of the phrase
e The part of speech of the current word

e Thetype of the current phrase (yes/no question, “wh” ques-
tion, comma, period, etc.)

These features are then paired with the observation log(d),
where d is the duration of the current phone. From the feature
vector and observation pairs, adecision treeis constructed to max-
imize the likelihood of the observations assuming a Gaussian dis-
tribution at each node of the tree.

In synthesis, feature vectors are compiled from the text to be
synthesized in the same manner as was used for training the de-
cision tree. Those feature vectors are then dropped down the tree;
the mean of the duration of all training vectors mapping to that | eaf
is then used as the target duration for the phone to be synthesized.

The duration tree was shown to provide a significant improve-
ment over the rule-based durations when combined with pitch
smoothing, to be described in section 2.5, as shown in table 2.

2.3. Cost Function

The cost function mentioned in [1] was designed under the as-
sumption that pitch and duration modification would be performed
to force the synthetic speech output to reach the prosodic targets.
Thus, cost curves were designed through trial-and-error to reflect
the amount of audible degradation introduced by modifying the
segment’s inherent prosody by different amounts. For example, a
database segment with a duration longer than the target was not
penalized, while a segment with a duration shorter than the tar-
get was penalized, because modification to shorten durations in-
troduces fewer artifacts and isgenerally preferred over performing
modification to lengthen durations.

However, as the signa processing necessary to ater the
prosodic content of the speech segments introduces undesirable
artifacts into the signal that cause the speech to sound unnatu-
ral, we decided to minimize the amount of signal processing we

would do, and we redesigned the cost function under the assump-
tion that prosodic modification would not be performed. Thus,
rather than penalizing segments based on how much distortion
would be introduced if that segment were modified to match the
target, we penalize segments based on the distance between the tar-
get and the database segment value. Furthermore, we introduced
tunable weights on each component of the cost function so that,
through tradeoffs, a desired attribute may be approximated more
closely, e.g. better spectral smoothness at the expense of achiev-
ing the pitch target. After the database segments which minimize
the cost function are selected, we do perform prosodic modifica
tion, forcing the speech to follow a piecewise linear pitch contour.
These contours linearly join the end pitches of the selected seg-
ment pitches, rather than the target pitches. They have the prop-
erty that they do not exhibit sudden jumpsin pitch and at the same
time they reduce the amount of distortion introduced to the sig-
nal through signal processing relative to using the target pitches,
since they typically require only small modifications to the origi-
nal pitch.

We performed a formal listening test (seven-point scale), ask-
ing participants to rate the naturalness of speech generated from
the rule-based pitch target generation and the accompanying cost
function (pitch modification performed), and the decision-tree
pitch target generation and the new cost function (modification of
pitch to the target not performed). The results are shown in ta-
ble 1. The improvement from system A to system B is statistically
significant (p = 0.002).

System MOS
A. Rule-based pitch, old cost function 26
B. Decision-tree pitch, new cost function 4.6

Table 1. Results of a listening test considering rule-based vs.
decision-tree based pitch targets.

The piecewise linear pitch contour does suffer from disconti-
nuities in the derivative of the pitch, when the linear segmentsjoin
at sharp angles. Rapid changes in the slopes of linear segments
can lead to a“warble” heard in the synthetic speech which isquite
unpleasant. To overcome this problem, a further enhancement of
the piecewise linear pitch contour is achieved through the pitch
smoothing algorithm described in section 2.5.

2.4. Search

The search for the sequence of speech segments which will
minimize the cost function is at the heart of a unit-selection based
speech synthesis system and consumes the bulk of the process-
ing time. As the amount of data grows, the search time can grow
exponentially. Thus, the need for fast pruning algorithms which
preserve the minimum-cost solution presents itself. The previous
version of our system did pruning of candidates based on their
proximity to the prosodic targets; the nearest N (typically 5) can-
didates to the targets were retained, and a full dynamic program-
ming search of the resulting grid was performed. However, we
realized that numerous acceptable prosodic renditions of a given
text may be possible and that we may want to relax the prosodic
constraints while enforcing spectral smoothness. Thuswe changed
the pruned-grid search to a Viterbi beam search [3], in which all
candidates in the target leaf, as defined by the decision tree, are
considered. For speed, we no longer consider segments from other
contexts, with some penalty, as was described in [1]. All seg-
ments in the target leaf are scored using the best cost among the
costs computed from all possible predecessors costs to date and
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the pitch transition and spectral transition costs to them. All seg-
ments within twice the beamwidth of the best segment are then
scored against the target prosody. Segments within the beamwidth
of the best segment are then retained for use in the next step in the
dynamic programming forward pass.

2.5. Pitch Smoothing

After segment selection takes place, a pitch contour consisting
of apiecewise linear connection of the observed end pitch of each
selected segment isconstructed. By using the observed pitch rather
than the target pitch, we avoid making large modifications to the
original signal, thereby introducing less distortion to the synthetic
speech. Although this method of constructing a pitch contour from
concatenated segments is continuous in the mathematical sense, it
can exhibit rapid fluctuations and sharp corners (large discontinu-
itiesin the first derivative) which sound asif the talker were shak-
ing or distressed. We introduce additional smoothing to remove
this effect.

Smoothing is accomplished by convolving the piecewise lin-
ear pitch contour with a kernel function. In order to avoid a dis-
placement of the contour in time, the kernel is made symmetric, so
that the phase shift is zero. Good results were obtained with the

double exponential kernel h (1) = ﬁe_%,with values of 7o in
the range of 30-90 msec.

Combined use of the pitch smoothing and decision-tree-based
duration models were shown to significantly outperform the
baseline system in a listening test (five-point scale), as shown
in table 2. The improvement from system A to system C is
statistically significant (p < 0.05).

System MOS
A. Piecewiselinear pitch, rule-based durations | 3.42
B. Smoothed pitch, rule-based durations 3.50
C. Smoothed pitch , decision-tree durations 3.63

Table 2. Results of a listening test considering pitch smoothing
and decision tree based duration modeling.

2.6. Presdlection

A further improvement to the IBM TTS system came in the
method which we use for preselection. The previous version of
the system retained only the first N (typicaly 25) segments for
each leaf. A new, data-driven algorithm was implemented which
retained segments based on the number of times they were used in
synthesizing alarge test corpus. See[4] for details.

3. RECENT IMPROVEMENTSTO THE DATA

In addition to the algorithmic changes described above, we have
aso recorded a new female voice. The decision to undertake this
data collection was driven by feedback from our customers, whose
comments on the previous voices indicated that the dynamic range
of the pitch was too small, leading to dull, disinterested sounding
voices. We attempted to increase the dynamic range of the pitch
by scaling the predicted pitch targets, and either trying to find seg-
ments that had similar pitch and do no signal processing, or by
adjusting the pitch of the original segment to match the desired
target. Both of these methods failed to improve quality, however.
When we tried to find segments whose pitch matched the adjusted

targets, we could not, because the underlying database consisted
of segments with very little pitch variation. Thus, when not mod-
ifying the segment pitch to match the target pitch, there was little
perceived difference whether or not the dynamic range of the tar-
gets was scaled, since there were no segments with the pitch of
the scaled target to be found. Also, when we tried doing signal
processing to force the selected segment pitch to match the target,
we introduced many unnatural artifacts since the targets and the
segment pitches were often very different.

Thus, we came to the conclusion that we needed to record new,
“enthusiastic” voices, having previously established that recording
agiven style of natural speech leads to synthetic speech exhibiting
that same speaking style[5].

3.1. Auditions

In order to select the speakers for our new voices, we held
a series of auditions. The idea of auditioning speakers for TTS
was presented in [6]. Our first audition consisted of recording
about two minutes of speech from each of 25 female speakers. We
then created a telephone demonstration showcasing natural speech
from each of those voices, plus our origina system’s speaker, and
asked a large number of listeners to call in and rate the voices.
From those votes, we selected six finalists for an “extended au-
dition” which consisted of recording 1400 phonetically-balanced
sentences. From those recordings, we built text-to-speech systems
for each of the six finalists, and again asked listeners to cal in
and rate the synthetic voices. From that vote we selected the top
vote-getter as our new female voice.

3.2. Scripts

In addition to a new speaker, we adopted anew recording script,
which was much larger than the previous one. The old script con-
sisted of 1400 phonetically-balanced sentences, which were con-
structed for the purpose of obtaining a compact database. How-
ever, those data lacked many phrases which were likely to be syn-
thesized in real-world applications, such as“Welcometo ...” Thus
we constructed a new script; the first 1400 were the same phonet-
ically balanced sentences used originally and the remainder were
taken from a variety of different domains, including news reports
from wire services, e-mail, airline phone prompts, finance-related
material, dates, weather, and numbers.

The total script corresponds to about 15 hours of speech, in-
cluding silence, or nearly 11 hours of speech excluding silence.
Thisisroughly ten timeslarger than our previous database.

3.3. Recordings

Recordings were made in a professional recording studio in
which the speaker and recordists werein separate rooms connected
by a window. Text-to-speech recordings require, in addition to a
low noise floor, extraordinarily low reflections in the booth; thus
the surfaces of the recording room (excluding the window) were
covered in absorbent material and the speaker was speaking par-
alel to the window so as to minimize reflections. Recording ses-
sionstypically lasted about four hours per day, with several breaks
to avoid speaker fatigue. Direction was provided to the speakers
to elicit awarm and friendly speaking style. Measures were taken
to ensure consistency in volume and style within and between ses-
sions.
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4. OVERALL RESULTS

Through the combination of improved algorithms, a change
of speaker and speaking style, and an increase in the amount of
recorded data, we have been able to significantly increase the in-
telligibility, naturalness, prosody, and social impression [7] of our
femalevoicewhen it isheard on desktop speakers (asin web-based
applications) or on the telephone (as in telephony-based applica
tions). We have improved the overall MOS-X score from 3.68 for
the previous system to 4.85 for the new system via speakers and
5.42 via telephone, a significant increase in listener perception of
the new voice in both listening environments (p < 0.0001).

V oice Comparison by MOS-X Factor
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Fig. 1. Results of a listening test (7-point scale) comparing the
previous and most recent female voice in the IBM U.S. English
text-to-speech system, heard via desktop speakers and telephone.
Improvement from Previous to Recent voice is statistically signif-
icant across al MOS-X factors (p < 0.0001).

Interestingly, when we compared the new female speaker to
our previous femal e speaker, using the same amount of data (1400
phonetically balanced sentences), we actually observed a large
drop in performance, from an MOS score of 3.8 for the previous
voice to a score of 3.0 for the new voice, which was statistically
significant (p < 0.05). This result may be explained by the fact
that the new voice has a much larger prosodic range and therefore
requires much more data to adequately cover the space. With the
small amount of data used to build the systems in this test, large
spectral and pitch discontinuities were observed in the synthetic
speech; the discontinuities diminish as the dataset size increases.

In addition to U.S. English, the algorithmic and data collection
procedures have been tested in other languages. The agorithms
result in statistically significant improvementsin the intelligibility,
naturalness, prosody, and social impression of French (p < 0.008,
all MOS-X factors) and German (p < 0.015, al MOS-X factors),
as compared with the previous systems. The overall MOS-X score
also revealed substantial perceptua improvement for French (p <
0.001) and German (p < 0.0001).

Finally, we note that we have been able to achieve areduction
in the average number of non-contiguous segment concatenations,
from a previous value of about 70% (that is, out of every ten possi-
ble places for a non-contiguous concatenation to occur, seven did)
to a current value of about 30%. This reduction was effected pri-
marily through the changes to the cost function and search strategy,
and through the use of additional data.
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