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ABSTRACT

This paper extends the technique of speech reconstruction from
MFCCs by considering the effect of noisy speech. To reconstruct
a clean speech signal from noise contaminated MFCCs an
estimate of the clean mel-filterbank vector is required together
with a robust estimate of the pitch. This work applies spectral
subtraction to the mel-filterbank vector (derived from noisy
MFCCs) to provide a clean speech spectral estimate. To obtain a
reliable estimate of pitch a robust extraction technique is used.

Spectrograms and informal listening tests reveal that a clean
speech signal can be successfully reconstructed from the noisy
MFCCs. Pitch errors are shown to manifest themselves as
artificial sounding bursts in the reconstructed speech signal.
Incorrect estimates of the spectral envelope introduce periods of
noise into the reconstructed speech.

1. INTRODUCTION

The increasing deployment of mobile devices in combination
with advances in speech recognition technology has resulted in a
substantial increase in the number of automated speech-based
services being made available. To a large extent the success of
these automated services relies on their ability to perform robust
speech recognition from mobile devices in a range of
environmental conditions.
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Figure 1-a: Codec-based speech communication.
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Figure 1-b: Distributed speech recognition communication

Speech communication from mobile devices has traditionally
been made using low bit-rate speech codecs as illustrated in
figure 1-a. The low bit-rates at which these codecs operate
introduces a slight distortion onto the speech signal which
becomes more severe in noisy conditions. When input into a
speech recogniser this distortion causes a noticeable reduction in
accuracy. The technique of distributed speech recognition (DSR)
[1] has been proposed by the ETSI Aurora group to overcome
this problem - as illustrated in figure 1-b. DSR replaces the
codec on the terminal device with the front-end processing
component of the speech recogniser which thereby removes

codec-based distortion from the speech recogniser input. This
results in a significant improvement in speech recognition
accuracy. However, because speech feature vectors are designed
to be a compact representation, for discriminating between
speech sounds, they do not contain sufficient information to
enable reconstruction of the original speech signal. In particular
valuable speaker information is lost, such as pitch. However,
several schemes have recently been proposed for reconstructing
speech from MFCC vectors and pitch [2,3].

This work builds on techniques for speech reconstruction, but
now considers reconstructing a clean speech signal from noise
contaminated MFCCs. Speech reconstruction can be considered
as requiring both speech excitation (source) and vocal tract
(filter) information. Therefore to achieve clean speech
reconstruction the noise contaminated MFCC-derived spectral
envelope must be enhanced and a reliable pitch estimate made
from the noisy speech signal. Section 2 of this paper reviews the
sinusoidal model of speech and introduces a pitch smoothing
which improves speech quality. Section 3 describes the use of
spectral subtraction for obtaining a clean spectral envelope from
noise contaminated MFCCs. A method for reliably extracting
pitch from noisy speech is described in section 4. Results of the
clean speech reconstruction are presented in section 5 and a
conclusion is made in section 6.

2. SPEECH RECONSTRUCTION

This section reviews the MFCC extraction process and shows
how it can be integrated into a sinusoidal model of speech.

2.1. MFCC-based Feature Extraction

The stages involved in creating a stream of MFCC vectors are
illustrated in figure 2 - based on the ETSI Aurora standard [1].
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Figure 2: MFCC feature extraction procedure

A number of the transformation stages are invertible - such as
pre-emphasis, the Hamming window and logarithm operations.
Other stages discard information which makes them non-
invertible. The overlapping triangular filters of the mel-filterbank
essentially extract a frequency warped spectral envelope from the
magnitude spectrum. This loses finer detail of the magnitude
spectrum which includes speech excitation information in the
form of the pitch harmonics. Similarly taking the magnitude of
the complex spectrum loses phase information and the truncation
of the DCT smoothes the log filterbank. Too much information
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is lost to enable the MFCC vectors to be inverted into a time-
domain signal through a reversal of the procedures in figure 2.

However, it is possible to recover a smoothed estimate of the
magnitude spectrum from the MFCCs. Combining this with an
estimate of the pitch enables either a sinusoidal model or a
source-filter model to synthesis the original speech signal [2,3].
The proposed scheme for reconstruction clean speech from noisy
speech is illustrated in figure 3.

2.2. Sinusoidal Model of Speech for Reconstruction

The sinusoidal model [4] synthesises a speech signal, x(n), from
a summation of a number of sinusoids of varying amplitude, Al,
frequency, ωl, and phase, θl,

( ) ( )
( )
∑
=

+=
tL

l
lll nAnx

1
cos θω (1)

If all the parameters of the model are accurately identified then a
good reproduction of the original signal can be synthesised.
Reconstructing speech from MFCCs and a pitch estimate
requires several simplifications [9] of the model, but a good
reproduction of the original speech can still be recovered.

As described in [2] an estimate of the spectral envelope can be
obtained from MFCC vectors through zero padding and an
inverse DCT operation to give a log mel-filterbank estimate.
Applying an exponential operation to this and then interpolation

results in a smoothed magnitude spectral estimate, ( )ωX̂ .

Normalisation is needed to remove the effect of pre-emphasis
and the non-linear filterbank channel bandwidths. This can be
implemented in either the cepstral domain (as subtraction) or in
the frequency domain (as filtering) [3].

A simplification of the sinusoidal model assumes that the
frequencies of the sinusoid components, ωl, are harmonics of the
pitch frequency, ω0, i.e.

0ωω ll = (2)

Therefore from an estimate of the pitch, ω0, the frequencies of all
the sinusoids can be determined. Their amplitudes can be
computed from the value of the smoothed magnitude spectrum at
the particular harmonic frequency,

( )0
ˆ ωlXAl = (3)

The phase offset, θl, is calculated from two components [9]. One
component comes from the speech excitation (source) and can be
estimated using a linear phase model. The second component
comes from the vocal tract and can be estimated using a Hilbert
transform based on a minimum phase assumption [9].

Therefore, for each MFCC vector and pitch estimate, a frame of
reconstructed speech can be generated. Frames are merged
together through the use of overlapping triangular windows.

2.3. Pitch Smoothing

Listening tests and examination of spectrograms identified a
buzzing-type noise to be present in the reconstructed speech. It
was found that this results from the small pitch changes which
occur between successive frames. At mid and higher frequency
harmonics these pitch changes cause larger frequency differences
and result in confusion of harmonic tracks as shown in figure 4a.

Figure 4: Harmonic confusion a) original model; b) Sub-frame

To reduce the severity of inter-frame pitch changes each frame is
divided into a number of sub-frames as shown as figure 4-b.
Pitch in each sub-frame is obtained from linear interpolation
between adjacent frames. The effect of this is to smooth the pitch
and hence reduce the frequency shift that occurs between frames.

3 SPECTRAL ESTIMATION FROM NOISY MFCCs

To achieve clean speech reconstruction it is necessary to obtain
an estimate of the clean speech magnitude spectrum from the
noisy magnitude spectrum, extracted from the noisy MFCC
vectors. Many techniques have been proposed for achieving this
with the most successful being spectral subtraction and Wiener
filtering [5]. Currently, spectral subtraction is used to obtain a
clean speech magnitude spectral estimate, i.e.
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where ( )fYt , ( )fNt
ˆ and ( )fXt

ˆ represent the magnitude

spectra of the noisy speech, the noise and the clean speech
estimate. The variables α and β are the over-subtraction factor
and maximum attenuation of the filter, respectively.

Spectral subtraction is known to suffer from processing
distortions which occur when spectral magnitudes reach a
spectral floor. This results in certain frequencies being turned on
and off and causes the so called “musical noise”. In this work
such processing distortions are minimised by implementing the
subtraction in the mel-filterbank domain, rather than the
magnitude spectral domain. The averaging of the magnitude
spectrum made by the triangular windows of the mel-filterbank
means that channel estimates are less likely to reach flooring
values which would introduce distortion. For example, figure 5-a
shows the mel-filterbank and magnitude spectrum of a clean
speech signal. Figure 5-c shows the same signal but
contaminated by noise (shown in figure 5-b). Figure 5-d shows
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Figure 3 Speech reconstruction from noisy MFCCs and robust pitch estimation
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the result of subtracting the noise from the noisy signal to give a
clean speech estimate.
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Figure5: Spectral subtraction – filterbank & magnitude domains

Comparing the mel-filterbank domain clean speech estimate with
the original speech signal reveals a closer structure than is
obtained in the magnitude spectrum.

4. ROBUST PITCH ESTIMATION

To accurately reconstruct the speech signal it is vital to have a
reliable estimate of the pitch (for voiced sounds). Previous work
[6] used a comb function to determine the pitch from the
magnitude spectrum of the speech signal. This delivers good
pitch estimates for clean speech but is less accurate when
estimating pitch from noise contaminated speech. The pitch
detection algorithm in this work is based on robust pitch
estimation techniques [7,8].

Figure 6 illustrates the robust pitch estimation scheme. The noisy
speech signal is split into 128 frequency channels by the auditory
filterbank. A Teager energy operator extracts an energy envelope
for mid and high frequency regions of the signal. A set of
normalized auto-correlation functions, Ri(τ), are then obtained
for each of the channels, i, at varying time lags, τ. Auto-
correlation values from channels identified as being noisy are
discarded, while channels corresponding to clean speech are
summed together at the pseudo-periodic histogram (PPH) stage
[7]. This produces a waveform which varies at the pitch period.

Several improvements have been made to the system for reliably
extracting this pitch period. First, a low pass filter is used to
remove fluctuations at the output of the PPH stage. A comb
function is then applied to this signal to identify the pitch period.
Depending on the fit of the comb function to the waveform,
decisions can be made as to the level of voicing present.

A five-point median filter and a series of post-processing rules
are used to smooth the resulting pitch contour. These rules are
derived from observations of measured pitch contours. These
rules include that voiced frames last for at least three frames and
that voiced frames are unlikely to be interrupted by short bursts
of unvoiced frames.

To illustrate the effectiveness of the robust pitch extraction
algorithm, figure 7-a shows a signal contaminated by tonal noise.

Figure 7: a) Noise contaminated speech signal; b) Pitch contour
from comb function; c) Pitch contour from robust pitch estimator

Figure 7-b shows the pitch contour extracted using the comb
function for both clean speech and speech contaminated at an
SNR of 5dB. For clean speech the contour is accurate but for
noisy speech the estimator introduces many pitch errors. Figure
7-c shows the pitch contours estimated by the robust pitch
estimator. These are clearly less affected by noise and provide an
essential robust estimate of the pitch.

5. EXPERIMENTAL RESULTS

To analyse the effectiveness of the clean speech reconstruction
scheme a set of speech utterances based on Messiah sentences
has been used. These have been sampled at 8kHz and also
contain accurate pitch measurements taken from a laryngograph
at the recording sessions. To simulate noisy speech, wideband
noise from the ETSI Aurora database has been added artificially
at varying signal to noise ratios (SNRs).

Figure 8-a shows the spectrogram of the sentence “Look out of
the window and see if it’s raining” spoken by a female speaker.
Figure 8-b shows the same sentence contaminated by wideband
noise at an SNR of 10dB.

From this noisy speech a pitch contour is extracted using the
robust pitch estimation technique described in section 4 and also
a set of MFCC vectors as described in section 2.1. It is from
these two sets of parameters that clean speech reconstruction

Figure 6: Robust pitch estimation from noisy speech
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takes place. The overall quality of the reconstructed speech is
dependent on the accuracy of pitch estimation and the
effectiveness of spectral subtraction to remove the noise.

Figure 8: a) Original clean speech; b) Noisy speech - 10dB

Figure 9-a shows the spectrogram of the reconstructed speech
signal using the robust pitch estimate (section 4) and MFCC
vectors. No spectral subtraction has been employed at this stage.
Figure 9-b shows the same signal but reconstructed from mel-
filterbank vectors which have had an estimate of the noise
subtracted from them.

Figure 9: a) Reconstructed speech using robust pitch estimate;
b) reconstruction using robust pitch and spectral subtraction.

Figure 9-a shows that robust pitch estimates have enabled the
resulting pitch harmonics to be correctly positioned in
comparison with the original signal in figure 8. The inversion of
the MFCC vectors to a spectral envelope has produce a good
reproduction of the original spectral envelope of the speech. The
spectrogram in figure 9-b clearly shows that spectral subtraction
has removed the wideband noise present in the speech signal
shown in figure 8-b. Informal listening tests on a number of
utterances confirm the effective removal of the noise.

As a comparison, figure 10 shows the spectrogram of the
reconstructed speech signal using the measured pitch (taken from
laryngograph signal) and spectrally subtracted estimates of the
clean speech mel-filterbank vectors.

Again the spectrogram and listening tests show a relatively clean
speech signal. It is interesting to observe how similar the pitch
harmonics are between those derived from the robust pitch
estimate and the measured pitch from the laryngograph.

Figure 10: Reconstruction using laryngograph and subtraction.

These spectrograms, together with listening tests, demonstrate
that both robust pitch estimation and noise removal from the
spectral envelope are necessary conditions for clean speech
reconstruction. Errors in pitch estimation manifest themselves as
artificial sounding bursts in the reconstructed speech signal.
Incorrect estimates of the spectral envelope are perceived as part
of the contaminating noise remaining in the reconstructed
speech. A downloadable result is available at
http://www.uea.ac.uk/~a169838/

6. CONCLUSION AND DISCUSSION

This work has demonstrated that it is possible to reconstruct a
clean speech signal from a series of noisy MFCC vectors. To
achieve this both a robust pitch estimate and an estimate of the
clean magnitude spectrum is necessary. Results have shown that
performing spectral subtraction in the mel-filterbank domain
enables a sufficiently good estimate of the clean speech
magnitude spectrum to be derived for clean speech
reconstruction. Using a robust pitch estimation method, together
with some post-processing, gives a very close value to that
obtained from a laryngograph across a range of SNRs.
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