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ABSTRACT 

 
The duration of a speech passage can be altered using 
audio time-scale modification techniques. Time-scale 
modification can be achieved in the time domain by 
segmenting the input signal into overlapping frames and 
recombining the frames with an overlap differing from the 
analysis overlap.  We present a time-scale modification 
algorithm that uses a simple peak alignment technique to 
synchronize overlapping synthesis frames. The peak 
alignment overlap-add (PAOLA) algorithm also takes 
advantage of waveform properties to ensure a high quality 
output for the minimum number of iterations. The new 
algorithm produces a time-scaled output of approximately 
equal quality to that of an adaptive implementation of the 
commercially popular synchronised overlap-add (SOLA) 
algorithm, but offers a computational saving ranging from 
a factor of 15 (for a time-scale factor of 0.5) to 170 (for a 
time-scale factor of 1.1). 

 

1. INTRODUCTION 
 
Time-scale modification of speech allows the rate of 
articulation of a speech passage be increased or decreased, 
ideally without affecting the quality, pitch or naturalness 
of the original signal. This facility is useful for such 
applications as enhancement of degraded speech, foreign 
language learning and fast playback for telephone 
answering machines. Altering the time-scale of an audio 
signal can be achieved in the time domain or frequency 
domain, with advantages and disadvantages associated 
with each. 

Frequency domain techniques are capable of applying 
high quality time-scale modifications to a variety of 
complex audio signals within a wide range of time-scale 
factors, but their versatility comes at the expense of their 
computational burden. Time domain techniques, although 
unsuited to complex audio signals, are well suited to 
single speaker signals. They are capable of applying high 
quality time-scale modifications to speech equal to that of 
frequency domain techniques for moderate time-scale 
factors ranging from 0.5 – 2.5. Time domain techniques 

have the advantage of being much less computationally 
intensive than their frequency domain counterparts. 

The synchronised overlap-add (SOLA) algorithm [1] is 
a commercially popular time domain technique, which we 
summarise in section 2. Sub-section 2.1 outlines the 
synchronised and adaptive overlap-add (SAOLA) 
algorithm [2] that improves the output quality of SOLA 
for high time-scale factors and reduces the computational 
load for low time-scale factors. In section 3 we introduce 
the peak alignment overlap-add (PAOLA) algorithm, 
which offers a significant reduction in computational load 
on SAOLA but produces an output of approximately the 
same quality. Furthermore, we derive a set of equations 
that ensure optimum parameter choice for a given time-
scale factor. Sections 4 and 5 present a comparison of 
SAOLA and PAOLA in terms of computational load and 
output quality, respectively. Section 6 concludes the 
paper. 
 

2. SYNCHRONISED OVERLAP-ADD (SOLA) 
 
SOLA [1] segments the input signal x into m overlapping 
frames, of length N samples, each segment being Sa 
samples apart. Sa is the analysis step size. The time-scaled 
output y is synthesized by overlapping successive frames 
with each frame a distance of Ss + km samples apart. Ss is 
the synthesis step size, and is related to Sa by Ss = αSa, 
where α is the time scaling factor. km is a deviation 
allowance that ensures that successive synthesis frames 
overlap in a synchronous manner. km is chosen such that  
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is a maximum for k = km, where m represents the mth input 
frame and Lm is the length of the overlapping region. k is 
in the range kmin ≤  k ≤ kmax.  

Rm(k) is a correlation function which ensures that 
successive synthesis frames overlap at the ‘best’ location 
i.e. that location where the overlapping frames are most 
similar. Having located the ‘best’ position at which to 
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overlap, the overlapping regions of the frames are 
weighted prior to combination, generally using a linear or 
raised-cosine function. The output is then given by  
y(mSs + km + j) := 
(1– f(j))y(mSs + km + j) + f(j)x(mSa + j),0 ≤  j ≤ Lm – 1(2a) 
y(mSs + km +  j) = x(mSa +  j), Lm  ≤  j ≤ N – 1  (2b) 
 
where := in equation (2a) means ‘becomes equal to’ and 
f(j) is a weighting function such that 0 ≤  f(j) ≤ 1. 

A linear weighting function can be expressed as 
                f(j) = 0, j < 0       (3a) 

                    f(j) = j / (Lm – 1), 0 ≤ j ≤ Lm – 1               (3b) 
                    f(j) = 1, j > Lm – 1   (3c) 

 
Typically, N is in the range of 20ms to 30ms 

(corresponding to 320 samples and 480 samples at a 
sampling rate of 16kHz, respectively), Sa is in the range of 
N/3 to N/2 samples, kmin is –N/2 and kmax is N/2. [3] and 
[4] report that kmin can be set to 0.  
 
2.1. Synchronised and adaptive overlap-add (SAOLA) 
 
In general the parameters N, Sa , kmin and kmax are fixed for 
SOLA at algorithm development, which can be 
problematic. Consider the case where Sa is fixed at N/3, k 
is in the range 0 to N/2 and km for the previous iteration 
was 0. If α = 2 then Ss = 2N/3. For this case the number 
of possible overlaps is limited to N/3 i.e. from an overlap 
of N/3 to an overlap of 1. By limiting the number of 
possible overlaps the output quality is degraded. It can 
easily be shown that the number of possible overlaps is 
less than N/2 for α > 1.5. This problem could be 
alleviated by allowing k be in the range –N/2 to N/2. For 
this case, the number of possible overlaps is less than N/2 
for α > 3. However, the number of possible overlaps is 
greater than N/2 for α  < 3 and equal to N for α  ≤ 1.5. In 
[2] it is shown that N/2 possible overlaps are adequate and 
any number greater than this increases the computational 
load unnecessarily. From above, Ss should ideally be N/2 
for all α, allowing N/2 possible overlaps for all α, when k 
is in the range of N/2 to 0. SAOLA [2] achieves this by 
allowing Sa be adaptive i.e.  
                                 Sa = N/(2α)     (4) 

 
This result also has the effect of reducing the number 

of computations required for low time-scale factors.  
 

3. PEAK ALIGNMENT OVERLAP-ADD (PAOLA) 
 
The PAOLA algorithm operates in a similar manner to 
SOLA except that it uses a simple peak alignment 
technique to ensure synthesis frames overlap in a 
synchronous manner. PAOLA also takes waveform 
properties into consideration to provide a high quality 

output and to perform the minimum number of iterations 
for the desired time-scale factor. The adaptive overlap-add 
(AOLA) algorithm [5] also uses a peak alignment 
technique, but differs from PAOLA in implementation, 
with PAOLA offering a reduction in computational load. 

For the mth iteration, the PAOLA algorithm first 
searches the current output for the maximum peak ym(py) 
in the region ym(Mm – j),  0 ≤ j < SR, where Mm is the 
length of the current output ym after m iterations and SR is 
the length of the search region. Next, the maximum peak 
xm(px) is found in the region xm(j), 0 ≤ j < SR, where xm is 
mth input frame and is given by  
                       xm = x(mSa + j), 0 ≤  j < N.    (5) 
 
The mth input frame is then overlap-added with ym such 
that the located peaks xm(px)  and ym(py)  are aligned 
producing ym+1. Peak alignment is ensured by overlapping 
by an amount 
                           Lm = px + Mm – py + 1    (6) 

 
The average overlap length is SR and determines the 

synthesis step size Ss, since Ss + SR = N (see fig. 1 (b)). Ss 
= αSa as in SOLA. 

The overlapping regions of ym and the mth input frame 
are weighted prior to combination resulting in  
                   ym+1(j) = ym(j), 0 ≤  j ≤ Mm – Lm – 1            (7a) 
ym+1(Mm – Lm +  j)  = 

  ym(Mm – Lm +  j)(1– f(j)) + xm( j)f(j), 0 ≤  j ≤  Lm – 1(7b) 
 ym+1(Mm – Lm +  j) = xm( j) , Lm  ≤  j ≤  N   (7c) 
 
where f(j) is a linear weighting function. 

The mth iteration of the algorithm can basically be 
thought of as overlap-adding frame m with frame m–1, 
with an overlap equal to Lm, since frame m–1 was overlap-
added to ym-1 to produce ym. This is illustrated in fig. 1 (a) 
and fig. 1 (b). The analysis overlap is N – Sa, where N is 
the length of the analysis frame. 

Consider the case where px = 0 and py = Mm, then Lm = 
1, illustrated in fig. 1 (c). In this case the analysis-
overlapping region is almost repeated, except for one 
sample. For high quality time-scale modification the 
repeated segment should be short enough to ensure quaisi-
stationarity during voiced regions, so  

                                  N – Sa  ≤ Lstat     (8) 
 

where Lstat is that length that ensures that the segment is 
quaisi-stationary during voiced regions. Since N = SR + 
Ss and Ss = αSa  
                            (α  – 1)Sa  ≤ Lstat – SR    (9) 

So, 

                       
1−

−
≤

α
SRLstat

aS     for α  > 1            (10a) 

and  
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1−

−
≥

α
SRLS stat

a     for α < 1             (10b) 

 
Now consider the case where px = SR – 1 and py = Mm 

– (SR –1), then Lm = 2SR – 1 i.e. the maximum overlap. 
This case is illustrated in fig. 1 (d). In this case a segment 
of length Sa – (Ss – SR) is discarded during synthesis. For 
high quality time-scale modification the discarded 
segment should be short enough to ensure quaisi-
stationarity during voiced regions so  
                                Sa – (Ss – SR) ≤ Lstat   (11) 
Since Ss = αSa  
                               (1 – α)Sa ≤ Lstat – SR   (12) 
So, 

                           
α−
−

≥
1

SRLS stat
a

    for α  > 1            (13a) 

and 
                           

α−
−

≤
1

SRLstat
aS     for α < 1             (13b) 

 
Combining (10a) and (13a) gives 

       
αα −
−

≥≥
−
−

11
SRLSSRL stat

a
stat     for  α > 1         (14a) 

 
Combining (10b) and (13b) gives  

       
11 −

−
≥≥

−
−

αα
SRLSSRL stat

a
stat      for α < 1         (14b) 

 
The number of iterations that are executed is inversely 

proportional to Sa, therefore Sa should be maximised 
giving 

                        
|1| α−

−
=

SRLstat
aS    for all α  (15) 

And since N = SR + αSa 
                   









−
−

+=
|1| α

α SRLSRN stat  for all α               (16) 

 
From (16), as α approaches 1 the window length N 

approaches infinity. N must be limited to the length of the 
input x for the algorithm to operate as expected, and so for 
time-scale factors of 1 (and very close to 1) the output is a 
duplicate of the input. 

The above analysis requires that the window length be 
at least 2SR. Consider the case where the window length 
is less than 2SR, then from (16) 
                         









−
−

+>
|1|

2
α

α
SRL

SRSR stat   (17) 

Equation (17) holds true for 

                                   
statL

SR
<α     (18)                 Using an approach similar to the one used to calculate 

the computational load of SOLA in [5], it can be shown 
that the number of computations required per iteration of and for                      

             ( )                (19)   SRSRLstat −<− α2
 
The search region SR must contain at least one cycle of 

the lowest likely fundamental component to ensure that a 
peak exists within SR. For speech, this corresponds to 
about 8ms duration (128 samples for a sampling rate of 
16kHz). Lstat is typically in the region of 19ms (304 
samples for a sampling rate of 16kHz). The condition 
described by equation (19) has a positive solution for α 
only when Lstat < 2SR and in practice this situation does 
not arise. The condition of equation (18) occurs for low 
time-scale factors i.e. α ≤ 0.4 approximately. When this 
condition occurs SR should be decreased or Lstat should be 
increased. Either of these operations reduces the quality of 
the output but ensures that the algorithm operates as 
expected. Intuitively, as the time-scale factor approaches 
zero very large segments must be discarded to achieve the 
desired time-scale modification. 

Equations (15) and (16) provide us with the optimum 
analysis step size and window length to produce a high 
quality output for the minimum number of iterations. 

 

 
 

Fig. 1. PAOLA Analysis and Synthesis 
 

4. COMPUTATIONAL LOAD COMPARISON 
 
For both SAOLA and PAOLA the number of iterations 
required to time-scale a signal x of length Lx is equal to 
the number of analysis frames m, which is given by 
                                     m = Lx /Sa   (20) 

 
where Sa is the analysis step size. 

PAOLA requires 2SR comparisons to locate the peaks 
in the input frame and current output per iteration. 
Linearly cross fading the overlapping regions requires 
2SR multiplies and SR additions, on average, per iteration. 
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the SAOLA algorithm is (3/2)N + NLog2(3N) 
multiplications, (3/2)NLog2(3N) – 4/3 + N/4 additions and 
N/2 comparisons. Full details of the calculation of the 
computational load estimate for SAOLA can be found in 
[2]. 

Table 1 displays the number of computations required 
to implement SAOLA and PAOLA with Lx normalized to 
1. 

 
 SAOLA PAOLA 

Multiplies 2αLog2(3N) + 
3α 








−
−

SRLstat

|1| α 2SR 

Additions 3αLog2(3N) + 
α/2 + 8α/(3N) 








−
−

SRLstat

|1| α SR 

Comparisons α 







−
−

SRLstat

|1| α 2SR 

 
Table 1.  SAOLA and PAOLA Computational Load 

Estimate 
 

As mentioned in [5], a digital signal processor (DSP) 
can perform single cycle multiply, add and compare 
operations. However, an application specific integrated 
circuit (ASIC) multiply operation is approximately 
equivalent to 16 addition operations. Therefore, to 
calculate the total number of ASIC operations we weight 
the number of multiply operations by 16. 
 

 
 

Fig. 2. Ratio of SAOLA to PAOLA Operations 
 

Fig. 2 shows the ratio of SAOLA operations to 
PAOLA operations within time-scale factors ranging from 
0.5 to 3 for DSP implementations. The sampling rate = 
16kHz, N = 30ms, Lstat = 19ms, SR = 8ms. Similar plots 

were found for sampling rates of 8kHz and 44.1kHz, and 
also for ASIC implementations. 
 

5. OUTPUT QUALITY COMPARISON 
 
16 evaluation subjects of various age and gender carried 
out informal listening tests. The test comprised of 20 
comparisons between a track time-scaled by PAOLA and 
the same track time-scaled by SAOLA, using the same 
time-scale factor. The subjects were not informed which 
track was a SAOLA time-scaled track or which was a 
PAOLA time-scaled track. The tests covered a selection 
of time-scale factors ranging from 0.5 to 3 and contained 
an equal number of male and female speakers.  For all 
tests the sampling rate = 16kHz, N = 30ms, kmin = 0, kmax 
= N/2, Lstat = 19ms, SR = 8ms.  

The listening tests showed that the output quality of 
signals time-scaled by SAOLA and PAOLA are 
approximately equal. 

 
6. CONCLUSION 

 
 The PAOLA algorithm produces an output of quality 
approximately equal to that of the SAOLA algorithm with 
a computational saving ranging from a factor of 15 (for a 
time-scale factor of 0.5) to 170 (for a time-scale factor of 
1.1), as shown in fig. 2. We also found that the PAOLA 
algorithm is capable of producing comprehensible speech 
for time-scale factors as high as 8. 
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