
HIGH QUALITY TIME-SCALE MODIFICATION OF SPEECH USING A PEAK
ALIGNMENT OVERLAP-ADD ALGORITHM (PAOLA)

David Dorran*, Robert Lawlor** and Eugene Coyle*

Dublin Institute of Technology*. National University of Ireland, Maynooth**.

ABSTRACT

The duration of a speech passage can be altered using
audio time-scale modification techniques. Time-scale
modification can be achieved in the time domain by
segmenting the input signal into overlapping frames and
recombining the frames with an overlap differing from the
analysis overlap. We present a time-scale modification
algorithm that uses a simple peak alignment technique to
synchronize overlapping synthesis frames. The peak
alignment overlap-add (PAOLA) algorithm also takes
advantage of waveform properties to ensure a high quality
output for the minimum number of iterations. The new
algorithm produces a time-scaled output of approximately
equal quality to that of an adaptive implementation of the
commercially popular synchronised overlap-add (SOLA)
algorithm, but offers a computational saving ranging from
a factor of 15 (for a time-scale factor of 0.5) to 170 (for a
time-scale factor of 1.1).

1. INTRODUCTION

Time-scale modification of speech allows the rate of
articulation of a speech passage be increased or decreased,
ideally without affecting the quality, pitch or naturalness
of the original signal. This facility is useful for such
applications as enhancement of degraded speech, foreign
language learning and fast playback for telephone
answering machines. Altering the time-scale of an audio
signal can be achieved in the time domain or frequency
domain, with advantages and disadvantages associated
with each.

Frequency domain techniques are capable of applying
high quality time-scale modifications to a variety of
complex audio signals within a wide range of time-scale
factors, but their versatility comes at the expense of their
computational burden. Time domain techniques, although
unsuited to complex audio signals, are well suited to
single speaker signals. They are capable of applying high
quality time-scale modifications to speech equal to that of
frequency domain techniques for moderate time-scale
factors ranging from 0.5 – 2.5. Time domain techniques

have the advantage of being much less computationally
intensive than their frequency domain counterparts.

The synchronised overlap-add (SOLA) algorithm [1] is
a commercially popular time domain technique, which we
summarise in section 2. Sub-section 2.1 outlines the
synchronised and adaptive overlap-add (SAOLA)
algorithm [2] that improves the output quality of SOLA
for high time-scale factors and reduces the computational
load for low time-scale factors. In section 3 we introduce
the peak alignment overlap-add (PAOLA) algorithm,
which offers a significant reduction in computational load
on SAOLA but produces an output of approximately the
same quality. Furthermore, we derive a set of equations
that ensure optimum parameter choice for a given time-
scale factor. Sections 4 and 5 present a comparison of
SAOLA and PAOLA in terms of computational load and
output quality, respectively. Section 6 concludes the
paper.

2. SYNCHRONISED OVERLAP-ADD (SOLA)

SOLA [1] segments the input signal x into m overlapping
frames, of length N samples, each segment being Sa
samples apart. Sa is the analysis step size. The time-scaled
output y is synthesized by overlapping successive frames
with each frame a distance of Ss + km samples apart. Ss is
the synthesis step size, and is related to Sa by Ss = αSa,
where α is the time scaling factor. km is a deviation
allowance that ensures that successive synthesis frames
overlap in a synchronous manner. km is chosen such that

()
∑∑

∑
−

=

−

=

−

=

+++

+++
=

1

0

2
1

0

2

1

0

)()(

)()(

mm

m

L

j
s

L

j
a

L

j
as

m

jkmSyjmSx

jmSxjkmSy
kR (1)

is a maximum for k = km, where m represents the mth input
frame and Lm is the length of the overlapping region. k is
in the range kmin ≤ k ≤ kmax.

Rm(k) is a correlation function which ensures that
successive synthesis frames overlap at the ‘best’ location
i.e. that location where the overlapping frames are most
similar. Having located the ‘best’ position at which to

I - 7000-7803-7663-3/03/$17.00 ©2003 IEEE ICASSP 2003

➠ ➡

overlap, the overlapping regions of the frames are
weighted prior to combination, generally using a linear or
raised-cosine function. The output is then given by
y(mSs + km + j) :=
(1– f(j))y(mSs + km + j) + f(j)x(mSa + j),0 ≤ j ≤ Lm – 1(2a)
y(mSs + km + j) = x(mSa + j), Lm ≤ j ≤ N – 1 (2b)

where := in equation (2a) means ‘becomes equal to’ and
f(j) is a weighting function such that 0 ≤ f(j) ≤ 1.

A linear weighting function can be expressed as
 f(j) = 0, j < 0 (3a)

 f(j) = j / (Lm – 1), 0 ≤ j ≤ Lm – 1 (3b)
 f(j) = 1, j > Lm – 1 (3c)

Typically, N is in the range of 20ms to 30ms

(corresponding to 320 samples and 480 samples at a
sampling rate of 16kHz, respectively), Sa is in the range of
N/3 to N/2 samples, kmin is –N/2 and kmax is N/2. [3] and
[4] report that kmin can be set to 0.

2.1. Synchronised and adaptive overlap-add (SAOLA)

In general the parameters N, Sa , kmin and kmax are fixed for
SOLA at algorithm development, which can be
problematic. Consider the case where Sa is fixed at N/3, k
is in the range 0 to N/2 and km for the previous iteration
was 0. If α = 2 then Ss = 2N/3. For this case the number
of possible overlaps is limited to N/3 i.e. from an overlap
of N/3 to an overlap of 1. By limiting the number of
possible overlaps the output quality is degraded. It can
easily be shown that the number of possible overlaps is
less than N/2 for α > 1.5. This problem could be
alleviated by allowing k be in the range –N/2 to N/2. For
this case, the number of possible overlaps is less than N/2
for α > 3. However, the number of possible overlaps is
greater than N/2 for α < 3 and equal to N for α ≤ 1.5. In
[2] it is shown that N/2 possible overlaps are adequate and
any number greater than this increases the computational
load unnecessarily. From above, Ss should ideally be N/2
for all α, allowing N/2 possible overlaps for all α, when k
is in the range of N/2 to 0. SAOLA [2] achieves this by
allowing Sa be adaptive i.e.
 Sa = N/(2α) (4)

This result also has the effect of reducing the number

of computations required for low time-scale factors.

3. PEAK ALIGNMENT OVERLAP-ADD (PAOLA)

The PAOLA algorithm operates in a similar manner to
SOLA except that it uses a simple peak alignment
technique to ensure synthesis frames overlap in a
synchronous manner. PAOLA also takes waveform
properties into consideration to provide a high quality

output and to perform the minimum number of iterations
for the desired time-scale factor. The adaptive overlap-add
(AOLA) algorithm [5] also uses a peak alignment
technique, but differs from PAOLA in implementation,
with PAOLA offering a reduction in computational load.

For the mth iteration, the PAOLA algorithm first
searches the current output for the maximum peak ym(py)
in the region ym(Mm – j), 0 ≤ j < SR, where Mm is the
length of the current output ym after m iterations and SR is
the length of the search region. Next, the maximum peak
xm(px) is found in the region xm(j), 0 ≤ j < SR, where xm is
mth input frame and is given by
 xm = x(mSa + j), 0 ≤ j < N. (5)

The mth input frame is then overlap-added with ym such
that the located peaks xm(px) and ym(py) are aligned
producing ym+1. Peak alignment is ensured by overlapping
by an amount
 Lm = px + Mm – py + 1 (6)

The average overlap length is SR and determines the

synthesis step size Ss, since Ss + SR = N (see fig. 1 (b)). Ss
= αSa as in SOLA.

The overlapping regions of ym and the mth input frame
are weighted prior to combination resulting in
 ym+1(j) = ym(j), 0 ≤ j ≤ Mm – Lm – 1 (7a)
ym+1(Mm – Lm + j) =

 ym(Mm – Lm + j)(1– f(j)) + xm(j)f(j), 0 ≤ j ≤ Lm – 1(7b)
 ym+1(Mm – Lm + j) = xm(j) , Lm ≤ j ≤ N (7c)

where f(j) is a linear weighting function.

The mth iteration of the algorithm can basically be
thought of as overlap-adding frame m with frame m–1,
with an overlap equal to Lm, since frame m–1 was overlap-
added to ym-1 to produce ym. This is illustrated in fig. 1 (a)
and fig. 1 (b). The analysis overlap is N – Sa, where N is
the length of the analysis frame.

Consider the case where px = 0 and py = Mm, then Lm =
1, illustrated in fig. 1 (c). In this case the analysis-
overlapping region is almost repeated, except for one
sample. For high quality time-scale modification the
repeated segment should be short enough to ensure quaisi-
stationarity during voiced regions, so

 N – Sa ≤ Lstat (8)

where Lstat is that length that ensures that the segment is
quaisi-stationary during voiced regions. Since N = SR +
Ss and Ss = αSa
 (α – 1)Sa ≤ Lstat – SR (9)

So,

1−

−
≤

α
SRLstat

aS for α > 1 (10a)

and

I - 701

➡ ➡

1−

−
≥

α
SRLS stat

a for α < 1 (10b)

Now consider the case where px = SR – 1 and py = Mm

– (SR –1), then Lm = 2SR – 1 i.e. the maximum overlap.
This case is illustrated in fig. 1 (d). In this case a segment
of length Sa – (Ss – SR) is discarded during synthesis. For
high quality time-scale modification the discarded
segment should be short enough to ensure quaisi-
stationarity during voiced regions so
 Sa – (Ss – SR) ≤ Lstat (11)
Since Ss = αSa
 (1 – α)Sa ≤ Lstat – SR (12)
So,

α−
−

≥
1

SRLS stat
a

 for α > 1 (13a)

and

α−
−

≤
1

SRLstat
aS for α < 1 (13b)

Combining (10a) and (13a) gives

αα −
−

≥≥
−
−

11
SRLSSRL stat

a
stat for α > 1 (14a)

Combining (10b) and (13b) gives

11 −

−
≥≥

−
−

αα
SRLSSRL stat

a
stat for α < 1 (14b)

The number of iterations that are executed is inversely

proportional to Sa, therefore Sa should be maximised
giving

|1| α−

−
=

SRLstat
aS for all α (15)

And since N = SR + αSa









−
−

+=
|1| α

α SRLSRN stat for all α (16)

From (16), as α approaches 1 the window length N

approaches infinity. N must be limited to the length of the
input x for the algorithm to operate as expected, and so for
time-scale factors of 1 (and very close to 1) the output is a
duplicate of the input.

The above analysis requires that the window length be
at least 2SR. Consider the case where the window length
is less than 2SR, then from (16)









−
−

+>
|1|

2
α

α
SRL

SRSR stat (17)

Equation (17) holds true for

statL

SR
<α (18) Using an approach similar to the one used to calculate

the computational load of SOLA in [5], it can be shown
that the number of computations required per iteration of and for

 () (19) SRSRLstat −<− α2

The search region SR must contain at least one cycle of

the lowest likely fundamental component to ensure that a
peak exists within SR. For speech, this corresponds to
about 8ms duration (128 samples for a sampling rate of
16kHz). Lstat is typically in the region of 19ms (304
samples for a sampling rate of 16kHz). The condition
described by equation (19) has a positive solution for α
only when Lstat < 2SR and in practice this situation does
not arise. The condition of equation (18) occurs for low
time-scale factors i.e. α ≤ 0.4 approximately. When this
condition occurs SR should be decreased or Lstat should be
increased. Either of these operations reduces the quality of
the output but ensures that the algorithm operates as
expected. Intuitively, as the time-scale factor approaches
zero very large segments must be discarded to achieve the
desired time-scale modification.

Equations (15) and (16) provide us with the optimum
analysis step size and window length to produce a high
quality output for the minimum number of iterations.

Fig. 1. PAOLA Analysis and Synthesis

4. COMPUTATIONAL LOAD COMPARISON

For both SAOLA and PAOLA the number of iterations
required to time-scale a signal x of length Lx is equal to
the number of analysis frames m, which is given by
 m = Lx /Sa (20)

where Sa is the analysis step size.

PAOLA requires 2SR comparisons to locate the peaks
in the input frame and current output per iteration.
Linearly cross fading the overlapping regions requires
2SR multiplies and SR additions, on average, per iteration.

I - 702

➡ ➡

the SAOLA algorithm is (3/2)N + NLog2(3N)
multiplications, (3/2)NLog2(3N) – 4/3 + N/4 additions and
N/2 comparisons. Full details of the calculation of the
computational load estimate for SAOLA can be found in
[2].

Table 1 displays the number of computations required
to implement SAOLA and PAOLA with Lx normalized to
1.

 SAOLA PAOLA

Multiplies 2αLog2(3N) +
3α 








−
−

SRLstat

|1| α 2SR

Additions 3αLog2(3N) +
α/2 + 8α/(3N) 








−
−

SRLstat

|1| α SR

Comparisons α 







−
−

SRLstat

|1| α 2SR

Table 1. SAOLA and PAOLA Computational Load

Estimate

As mentioned in [5], a digital signal processor (DSP)
can perform single cycle multiply, add and compare
operations. However, an application specific integrated
circuit (ASIC) multiply operation is approximately
equivalent to 16 addition operations. Therefore, to
calculate the total number of ASIC operations we weight
the number of multiply operations by 16.

Fig. 2. Ratio of SAOLA to PAOLA Operations

Fig. 2 shows the ratio of SAOLA operations to
PAOLA operations within time-scale factors ranging from
0.5 to 3 for DSP implementations. The sampling rate =
16kHz, N = 30ms, Lstat = 19ms, SR = 8ms. Similar plots

were found for sampling rates of 8kHz and 44.1kHz, and
also for ASIC implementations.

5. OUTPUT QUALITY COMPARISON

16 evaluation subjects of various age and gender carried
out informal listening tests. The test comprised of 20
comparisons between a track time-scaled by PAOLA and
the same track time-scaled by SAOLA, using the same
time-scale factor. The subjects were not informed which
track was a SAOLA time-scaled track or which was a
PAOLA time-scaled track. The tests covered a selection
of time-scale factors ranging from 0.5 to 3 and contained
an equal number of male and female speakers. For all
tests the sampling rate = 16kHz, N = 30ms, kmin = 0, kmax
= N/2, Lstat = 19ms, SR = 8ms.

The listening tests showed that the output quality of
signals time-scaled by SAOLA and PAOLA are
approximately equal.

6. CONCLUSION

 The PAOLA algorithm produces an output of quality
approximately equal to that of the SAOLA algorithm with
a computational saving ranging from a factor of 15 (for a
time-scale factor of 0.5) to 170 (for a time-scale factor of
1.1), as shown in fig. 2. We also found that the PAOLA
algorithm is capable of producing comprehensible speech
for time-scale factors as high as 8.

7. REFERENCES

[1] Roucos S. and Wilgus A.M., “High Quality Time-Scale
Modification for Speech”, IEEE International Conference on
Acoustics, Speech and Signal Processing, pp. 493-496, March
1985.

[2] Dorran D., Lawlor, R. and Coyle E., “Time-Scale
Modification of Speech using a Synchronised and Adaptive
Overlap-Add (SAOLA) Algorithm”, Submitted to the Audio
Engineering Society 114th Convention 2003, Amsterdam, The
Netherlands.

[3] Hardam, E., “High quality time scale modification of speech
signals using fast synchronised-overlap-add algorithms”, Proc.
of the IEEE International Conference on Acoustics, Speech and
Signal Processing, Volume 1, pp. 409-412, 1990.

[4] Wong, J.W.C., Au, O.C. and Wong, P.H.W, “Fast time scale
modification using envelope-matching technique (EM-TSM)”.
Proc. of the IEEE International Symposium on Circuits and
Systems, Volume 5, pp. 550–553, May 1998.

[5] Lawlor, R and Fagan A.D., “A Novel High Quality Efficient
Algorithm for Time-Scale Modification of Speech”, Eurospeech
’99, Budapest, Hungary, September 1999.

I - 703

➡ ➠

