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ABSTRACT
We present an algorithm to derive 7 kHz wideband speech

from narrowband “telephone speech”. A statistical approach is
used that is based on a Hidden Markov Model (HMM) of the
speech production process. A new method for the estimation of
the wideband spectral envelope is proposed, using nonlinear state-
specific techniques to minimize a mean square error criterion. In
contrast to common memoryless estimation methods, additional
information from adjacent signal frames can be exploited by uti-
lizing the HMM. A consistent advantage of the new estimation rule
is obtained compared to previously published HMM-based hard or
soft classification methods.

1. INTRODUCTION

In current public telephone systems the bandwidth of the transmit-
ted speech is typically limited due to legacies of the old analogue
telephone system to a frequency range of up to 3.4 kHz. This
bandwidth limitation causes the characteristic sound of “telephone
speech”. Listening experiments have shown that an enlarged fre-
quency bandwidth of speech signals contributes significantly to the
perceived speech quality, e.g. [1]. This fact is reflected by ongo-
ing standardizations of wideband speech codecs with a frequency
range up to 7 kHz, e.g. [2]. However, true wideband speech com-
munication requires a modification of the transmission link by en-
hanced speech codecs. Hence, for economical reasons there will
be mixed telephone networks for a long transitional period, com-
prising both narrowband and wideband codecs.

An alternative approach towards a larger perceived (audio)
bandwidth is artificial bandwidth extension (BWE): this technique
aims at the recovery of missing low and/or high frequency compo-
nents of the speech signal utilizing only the available narrowband
speech at the receiving side of the transmission link. Bandwidth
extension is feasible due to mutual dependencies in the frequency
bands of speech signals [3, 4]. One possible concept to explore
these redundancies is based on a linear source-filter model of the
speech production process, as proposed in [5, 6]: The time-varying
parameters of the source model are estimated from the narrowband
speech. These parameters are then used in combination with the
source model to estimate and add the missing frequency compo-
nents.

In this paper, bandwidth extension towards high frequencies
is treated: according to the frequency range of typical telephone
speech, the narrowband (subscript ��� ) input signal �����	��
	� is as-
sumed to contain frequencies lower than 3.4 kHz. The extended
frequency range between 3.4 and 8 kHz will be called extension
frequency band (subscript 
 � ) in the following. Wideband speech
is marked by the subscript � � . Note that the results of this pa-

per can be applied to different BWE scenarios as well, e.g., to the
BWE toward low frequencies [7].

2. BANDWIDTH EXTENSION ALGORITHM

The vast majority of the adaptive BWE algorithms published in
literature to date is based on the well-known linear source-filter
model of the speech production process: it is assumed that the
human vocal tract (including glottis pulse shaping) can be modeled
by an auto-regressive (AR) filter ����������� , which is excited by a
spectrally flat excitation signal ����
�� . Consequently, the bandwidth
extension of the speech signal is commonly performed separately
for the spectral envelope and the excitation of the speech [5, 6].
Fig. 1 shows the signal flow of our BWE algorithm.
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Fig. 1. Signal-flow of our BWE algorithm (from [8]). The focus
of this paper is on the two sub-blocks that are shaded in gray.

In Fig. 1 it is assumed that the narrowband input signal �����'��
��
is sampled at a sampling frequency that is sufficient to represent
the extended wideband speech signal (e.g. 1�2435�(6 kHz). The
processing is performed frame-by-frame with a frame-size of 20
ms. The frame index will be denoted by 7 in the following.

2.1. Estimation of the Wideband Spectral Envelope

The first step in the bandwidth extension algorithm is the estima-
tion of the spectral envelope of the original wideband speech sig-
nal. In Fig. 1 this task is performed by the upper blocks. The
resulting estimate

%)	* � resembles the coefficient set of the all-pole
(vocal tract) filter of the source-filter model. It has been found that
the estimated wideband spectral envelope is particularly important
for the quality of the extended speech, e.g. [5].
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For the estimation of
%) * � several memoryless approaches have

been proposed in literature, e.g., codebook based methods [5, 9,
10], linear mapping [11, 12], or statistical estimation [6, 13]. Our
estimation approach differs from most of these methods mainly in
the following two respects:

1. The estimation is based on a hidden Markov model (HMM)
of the speech generation process. Thereby, our estimator
can exploit information from previous signal frames to en-
hance the estimation quality [14, 4, 7, 8].

2. Before calculating the coefficients
%)	* � , a cepstral vector%.�/ � (see [4, 7, 8]) is estimated, representing the shape and

the gain of the spectral envelope of the extension band
only. This estimate is combined with the narrowband sig-
nal frame in a short-term power spectrum domain. The
(wideband) AR coefficients

%) * � are obtained via the auto-
correlation function using standard linear prediction analy-
sis techniques [7, 8].

In Fig. 1 the core of the spectral envelope estimation within
our BWE system is illustrated by the gray shading. The task of
the marked sub-system is to estimate the spectral envelope of the
extension band

%.0/ � based on the observation of a feature vector -
that is extracted from the narrowband speech signal � ��� ��
	� . For
this purpose a technique is used that is somewhat similar to pattern
recognition and relies on a statistical model of the speech gen-
eration process. The statistical model is trained off-line using a
training data base of true wideband speech signals.

A new algorithm for the estimation of the vector
%.�/ � is pro-

posed in Section 4. The underlying statistical model (hidden
Markov model) is introduced in Section 3.

2.2. Extension of the Excitation Signal

By utilizing the estimated wideband AR filter coefficients
%) * � for

an FIR analysis filter
%� * �'����� , operating on the narrowband input

signal �(���'��
�� , an estimate
%�&���	��
	� of the narrowband excitation

signal is determined. Note that the frequency response of the anal-
ysis filter is the inverse of the frequency response of the vocal tract
(synthesis) filter.

According to the assumed source-filter model of the speech
production process, the excitation signal

%� ���	��
	� resembles noise
(during unvoiced sounds) or a harmonic tone (during voiced
sounds) that is spectrally flat in the frequency range covered by
�(���	��
	� . New excitation components in the extension band are de-
rived by a spectral shift of the narrowband excitation

%� ��� ��
	� . This
shift is obtained by a modulation of

%� ��� ��
	� by a cosine signal with
a frequency of 3.4 kHz [15, 16, 8]. The combination of the mod-
ulated excitation with

%�&���	��
	� yields the estimate
%� * �'��
�� of the

wideband excitation signal.
The estimated wideband excitation signal

%� * �	��
	� is fed into
the all-pole synthesis filter ��� %� * � ����� to synthesize the enhanced
output speech signal

�� * �'��
	� . Because the excitation signal is not
modified within the frequency range covered by

%� ���	��
	� , and be-
cause the analysis filter and the synthesis filter are mutually in-
verse, the narrowband speech ��������
	� is contained transparently in
the output signal � * �	��
	� .

3. HIDDEN MARKOV MODEL

The vector estimation
%. 3 %.0/ � representing the spectral envelope

of the extension band is based on a Hidden Markov Model (HMM)
of the speech generation process. In the sequel the subscript 
 �

of
%. / � will be omitted for the sake of brevity. Each state

���
of

the HMM ( ��3 ���	�
�	����
 ) is assigned to a typical speech sound
(frame of 20 ms). The HMM states are defined during the off-line
training phase of the algorithm by the centroids of a vector quan-
tization (VQ) of the spectral envelope representation .�/ � . The VQ
codebook is the set of all centroids � 3�� �.�� �	�	�	� �.������ . Each state���

of the HMM is assigned to one entry
�. � of the VQ codebook

such that the number of HMM states is the same as the number
of codebook entries. It is implicitly assumed that the state may
change from frame to frame.

3.1. First-Order Markov Chain

In the sequel, it will be assumed that the state sequence is gov-
erned by a first order Markov chain. Two sets of parameters are
necessary to describe the properties of the state sequence:� the probability of occurence � � ��� � of the � -th state

���
with-

out taking into account the HMM state at the preceding or
following frame instant, and� the transition probabilities � � � � � 7�� ���	� � � � 7 � � for con-
secutive frame instants.

The state probabilities � � � � � and transition probabilities� � � � � 7!� �(�	� � � � 7 � � are calculated during the off-line training
phase from wideband training data using the true state sequence
derived via vector quantization of .�/ � .

3.2. State-Specific Gaussian Mixture Model

In our new estimation rule the state-specific mutual dependencies
between the variables - and . shall be taken into account. There-
fore, a model of the conditional joint Probability Density Function
(PDF) "�� - � . � ��� � is needed. For the definition of this PDF the two
column vectors - 3$# % � �	�	�
�&% ')(+* and . 3,# - � �	�.�	�&-0/
(+* are com-
bined in the vector 1 3�# - * . * ( * . The dimension of the vector 1
is 2436571 398:�<; , where 8 3=2>3?5 - and ;�3=2>3?5 . .

Since both - and . are multi-dimensional vectors with contin-
uous ranges of values, a vast amount of memory would be needed
for modeling the joint PDFs by histograms. Instead, a parametric
Gaussian Mixture Model (GMM) is utilized here:

"��@1 � � � �:A BC D E � FHG
I �
DKJ

�@1ML)N G
I � D �&O GPI � D � (1)

with QSR FHGPI � D R � and T BD E � FHGPI � D 3 � [17]. The mixture com-
ponents are the ( 8:�U; )-dimensional Gaussian densitiesJ

�@1ML)N G
I � D �&O G
I � D � 3!VXW YZH[ G W \^]K_ `+a@b cedgf Y]�_ `ha [ G Wi\�]�_ `+a@b�kjPl�� [ 'nm / bhoqp0r 2'
.siO G
I � D � (2)

The mean vectors N G
I � D and covariance matrices O GPI � D can be split
as follows: N G
I � D 3 t Nvu I � DNvw I � Dyx � (3)

O G
I � D 3 t{z u^u I � D z u w I � Dz w u I � D z wPw I � D x W
� �

The GMM parameters F4G
I � D , N G
I � D , and O G
I � D (with � 3
�0�
�.�	��� 
 and | 3 �0�
�.�	��} ) are obtained during the off-line training
phase. For each HMM state

� �
the state-specific PDF "�� - � . � � � �

is approximated using the expectation-maximization (EM) algo-
rithm, e.g. [17].
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4. ESTIMATION OF THE SPECTRAL ENVELOPE OF
THE EXTENSION BAND

By our estimation rule a continuous estimation of the parameter
vector . (cepstral representation of the envelope of the extension
band) shall be performed. The error criterion to be minimized is
the mean square error��� �?� . � 7 ��� %. � 7 �	�6� p �� � � 7 ���
	395 3 � � (4)

where � � 7 � 3 � - � �(�q� - �kj �q�	�	�.� - � 7 � � is the set of all feature
vectors that have been observed up to the 7 -th signal frame. The
solution of Eq. (4) is the conditional expectation

%. � 7 � 3 � � . � 7 �	� � � 7 � � (5)

3 �
��� . � 7 �P"�� . � 7 �	� � � 7 � ��2 . � 7 �e�
Because we do not have a model of the conditional PDF"�� . � 7 �	� � � 7 � � in closed-form, this quantity is expressed indi-
rectly via the states of the HMM

"�� . � 7 �	� � � 7 � ��3
���C � E � "�� . � 7 �q� ��� � 7 �	� � � 7 � �e� (6)

The PDF "�� . � 7 �q� ��� � 7 �	� � � 7 � � can be split into two factors
since, according to the definition of the HMM, the vectors - � 7 �
and . � 7 � exclusively depend on the state

� � � 7 � in the 7 -th sig-
nal frame"�� . � 7 �q� � � � 7 �	� � � 7 � �

3U"�� . � 7 �	� ��� � 7 �q� - � 7 � �)� � ��� � 7 �	� � � 7 � �e� (7)

Inserting (6) and (7) into Eq. (5) yields

%. � 7 � 3
���C � E � � � � � � 7 �	� � � 7 � �

� ����� . � 7 �P"�� . � 7 �	� � � � 7 �q� - � 7 � ��2 . � 7 ��� (8)

The integral at the right-hand side of Eq. (8) reflects the conditional
expectation

��� � . � 7 �
"�� . � 7 �	� ��� � 7 �q� - � 7 � �42 .
3 � � . � 7 �	� � � � 7 �q� - � 7 � � � (9)

The conditional expectation
� � . � 7 �	� � � � 7 �q� - � 7 � � can be cal-

culated from the parameters of the Gaussian mixture model of the
joint PDF "�� - � 7 �q� . � 7 �	� ��� � 7 � � as follows [18, 13]

� � . � 7 �	� ��� � 7 �q� - � 7 � � 3 BC D E � F w�� u I �
D �

��� N w I � D ��� � - � 7 ��� Nvu I � D � * z w u I � D z W �wPw I � D�� *�� � (10)

with

F w�� u I � D 3 F � DKJ � - LnNvu I � D �)O u I � D �T BD E � F � DKJ � - L)Nvu I � D �&Oyu I � D � �

Inserting the conditional expectation into Eq. (8) leads to the min-
imum mean square error (MMSE) estimation rule

%.����! �" � 7 �
3

���C � E � � � . � 7 �	� � � � 7 �q� - � 7 � � � � � � � 7 �	� � � 7 � �e� (11)

where (see [7, 8])� � ��� � 7 �	� � � 7 � � 3 "�� � � � 7 �q� � � 7 � �T �H�� E � "�� � � � 7 �q� � � 7 � � �"�� � � � 7 �q� � � 7 � � 3 "�� - � 7 �	� � � � 7 � �P"�� � � � 7 �q� � � 7#� �(� � �
"�� - � 7 �	� � � � 7 � � 3

BC D E � F �
DqJ

� - � 7 �qL Nvu I � D �&OyuPu I � D ���O uPu I � D 3 � z wPw I � D � z w u I � D z W �uPu I � D z u w I �
D � W � �

The a priori probability "�� � � � 7 �q� � � 7$� �(� � 3
% � � 7 � is deter-
mined recursively according to the equation [7, 8]% � � �(� 3 � � � � ��� (12)

% � � 7{� �(� 3
���C� E � % � � 7 �P"�� - � 7 �	� �i� � 7 � �� � � � � � 7,� �(�	� � � � 7 � ���

The estimation rule (11) can be interpreted as a cascaded estima-
tion rule: first the state-dependent expectation of . is calculated
for each state, followed by an individual weighting with the re-
spective a posteriori probabilities � � ��� � 7 �	� � � 7 � � .

4.1. References: Classification Rules

The new estimation rule (11) has been compared to several HMM-
based (hard resp. soft) classification rules:

ML:
%. 3 �. �

ML with � ML 3'&)(+* ���5�&),� E � "�� - � 7 �	� � � � 7 � � ,

MAP:
%. 3 �. �

MAP with � MAP 3'&)(+* ���5�&),� E � � � � � � 7 �	� � � 7 � � ,

MMSE:
%. 3

���C � E � �. � � � � � � 7 �	� � � 7 � � .

All of these classification rules build on the fact that
�. � 3� � . � � � � due to the definition of the HMM states. For a detailed

description of these rules please refer to [19, 7].

5. EVALUATION

The new estimation method has been evaluated both by instru-
mental performance measures and by informal listening tests. The
complexity of the HMM was varied between � 
 3 j �.�	� 6.- states,
and the number of Gaussians per state was specified to be in
the range } 3 ���	�
�$�$6 . The 15-dimensional feature vector -
consisted of the first ten normalized auto-correlation coefficients,
the zero crossing rate, the normalized frame energy, the gradient
index, the local kurtosis, and the narrowband spectral centroid.
Please refer to [7, 8] for a detailed description of these features.
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The measurements were performed using the SI100 corpus of
the BAS (Bavarian Archive for Speech Signals) database contain-
ing continuous German speech from 101 male and female speak-
ers. For training about 70% of the utterances were separated, re-
sulting in more than 25 hours of training data. The remaining
speech samples constituted the test set. The speaker-dependent
models were trained individually using only training data from a
single speaker.

The instrumental performance evaluation was performed in
terms of the root mean square (RMS) log spectral distortion (LSD)�; LSD of the estimated spectral envelope within the extension band.
As described in [4, 7] this sub-band spectral distortion measure
can be determined by calculating the mean square estimation error

�; LSD 3
� j �	Q��� *����	Q � ��� �?� .0/ � � %.�/ �M�?� p � � (13)

Note that the LSD measure is applied only to the high frequency
extension band in our case.
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Fig. 2. Mean log spectral distortion of the estimated spectral enve-
lope within the extension frequency band.

The results are illustrated in Fig. 2. For both speaker-
independent and speaker-dependent modeling, the new MMSE es-
timation rule from Eq. (11) yields a consistent improvement in
comparison to the classification methods. Listening tests con-
firmed that the new method produces an improved speech quality
with less artifacts.

6. CONCLUSION

A new HMM-based algorithm for the estimation of the gain and
the shape of the spectral envelope within the extension band was

proposed. The new estimation rule takes into account the a pos-
teriori state probabilities as well as state-specific dependencies on
the narrowband features. By both instrumental measurements and
informal listening tests it was found that the new approach deliv-
ers a consistent improvement as compared to previously published
HMM-based classification methods.
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