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ABSTRACT
We showed in [1] that penalizing long-term reverberation en-

ergy is more effective than maximizing the signal-to-reverberation 
ratio (SRR) for improving audible quality and automatic speech 
recognition (ASR) accuracy. Using this knowledge we propose a 
blind approach to speech dereverberation that reduces the length of 
the equalized speaker-to-receiver impulse response. The approach 
reduces the long-term correlation in the linear prediction (LP) re-
sidual of reverberant speech. We show that this approach improves 
both the audible quality (measured with subjective listening tests) 
and ASR accuracy (measured with two commercial ASR systems) 
of reverberant speech. 

1. BACKGROUND
The quality of speech captured by personal computers in real-

world environments is invariably degraded by acoustic interference. 
This interference can be broadly classified into two distinct catego-
ries: additive and convolutional. 

A received speech signal, ( )x n , can be modeled as 
( ) ( ) ( ) ( )Tx n n n w n= +r s , (1) 

where the clean speech is ( ) ( ) ( )[ ]1 Tn s n M s n= +s . Cor-
rupting this clean speech waveform is additive noise given by, 
( )w n , and time varying convolutional interference, 
( ) ( ) ( )[ ]0, 1, Tn r n r M n=r .

Additive noise can be significantly reduced by spectral sub-
traction or similar techniques (see for example [2] and references 
therein). These approaches have been successful, and are used in 
commercial products. 

The still existing convolutional interference problem can be 
modeled as ( )nr , an M -tap acoustic impulse response. Typical 
causes of this convolutional distortion are room and microphone 
effects. When ( )nr  is caused by room effects it is commonly re-
ferred to as reverberation. The focus of this work is developing a 
system for mitigating the effects of reverberation in captured speech 
to improve audible quality and ASR accuracy. 

It appears easy enough to remove reverberation: estimate the 
speaker-to-receiver filter, ( )nr , and then design an L -tap inverse 
filter ( )ng  to undo its effects: ( ) ( ) ( )Ty n n n= g x . From linear-
ity, we can speak of an equalized source-to-receiver impulse re-
sponse, ( )nh , that captures the combined effects of ( )nr  and 
( )ng . If ( )ng  perfectly equalizes the speaker-to-receiver impulse 

response then ( )nh  is a delta function and ( ) ( )y n s n=  (ne-
glecting additive noise in the received signal). Although this sounds 
simple, it is difficult in practice; ( )nr  must be estimated blindly 
from only the received signal(s). Further complicating matters, 
( )nr  is often plagued by zeros near the unit circle, making inver-

sion difficult [3]. Finally, ( )nr  is well modeled as an finite im-
pulse response (FIR) filter [4]. As such ( )nr  can only be inverted 
by a corresponding infinite impulse response (IIR) filter. To avoid 
using IIR inverse filters, most researchers use long FIR filters [5]. 
The requirement of an IIR inverse is only applicable in a single 
microphone input system, there is no such IIR constraint on multi-
ple input single output systems. 

It is possible to exploit multiple microphones to make the 
problem somewhat more tractable. We experimentally showed 
in [1] that multiple microphones are necessary for complete equali-
zation of the speaker-to-receiver impulse response. Furthermore, if 
complete equalization is not possible, penalizing long-term 
reverberation energy was shown to be more effective than 
maximizing the signal-to-reverberation ratio (SRR) for improving 
audible quality and ASR accuracy. Using this knowledge we 
proposed a nonblind equalizing strategy for reverberant speech. The 
performance of this approach was shown to exceed traditional 
speech enhancement techniques. 

In a real system, we do not have the luxury of direct access to 
the speaker-to-receiver impulse response. Without this, the ap-
proach proposed in [1] (WLLS equalization) has limited applicabil-
ity. Here we propose a new blind approach to speech dereverbera-
tion. This approach reduces the length of the equalized speaker-to-
receiver impulse response. We show that this approach can improve 
both the audible quality and ASR accuracy of reverberant speech. 

2. INTRODUCTION
Given a reverberated speech waveform, estimating the 

speaker-to-receiver impulse response is exceedingly difficult. If 
accurate estimates were available, the speaker-to-receiver impulse 
response could be directly equalized with a linear least squares 
(LLS) equalizer (or, as we have shown [1], more preferably a 
weighted linear least squares (WLLS) equalizer). Unfortunately, in 
practice, current techniques are not particularly effective at estimat-
ing the speaker-to-receiver impulse responses from reverberant 
speech [6]. 

Our goal is to mitigate the effects of reverberation by shorten-
ing the equalized speaker-to-receiver impulse response. What then 
can be done with access only to the received reverberant waveform?  

Compare in Figure 1, the equalized speaker-to-receiver im-
pulse responses (obtained in our previous work [1]) and their corre-
sponding autocorrelations for a variety of processing approaches. 
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Figure 1: Comparison of the speaker-to-receiver impulse response and the auto-
correlation of the speaker-to-receiver impulse response from (left) unprocessed 
single channel, (middle) 1-channel LLS equalized response, and (right) the 
1-channel WLLS equalized response. The BWLLS equalizer reduced the energy at 
longer lags in the autocorrelation compared with either the unprocessed single 
channel or LLS equalized response. 

I - 6760-7803-7663-3/03/$17.00 ©2003 IEEE ICASSP 2003

➠ ➡



Specifically compare that obtained using 1-channel binary weighted 
linear least squares (BWLLS) equalization to that obtained using 
either no processing or 1-channel LLS processing. As we have seen 
in [1], the WLLS processed speaker-to-receiver impulse response 
had less long-term reverberation energy than either the original 
impulse response or the impulse response corresponding to LLS 
processing. In addition, the corresponding autocorrelation sequence 
also had less energy at longer lags than either the original impulse 
response or the impulse response corresponding to LLS processing. 
This reduced energy in the autocorrelation sequence is a direct con-
sequence of the reduced long-term reverberation energy in the 
equalized speaker-to-receiver impulse response. We showed in [1] 
that this shortening of the equalized speaker-to-receiver impulse 
response translates to improved audible quality and ASR accuracy. 

Since direct estimation of the speaker-to-receiver impulse re-
sponse is difficult, we instead propose to reduce the long-term cor-
relation energy in the received reverberant waveform. The basic 
idea is this: WLLS processing explicitly reduces the long-term re-
verberation energy in the equalized speaker-to-receiver impulse 
response. Indirectly, the correlation energy at long lags is also re-
duced. In our proposed blind approach, we instead explicitly reduce 
the correlation energy at long lags. This indirectly shortens the 
equalized speaker-to-receiver impulse response. 

Most of the long-term correlation that exists in reverberant 
speech is due to the speaker-to-receiver impulse response, very little 
is due to the correlation in speech. Furthermore, most of the correla-
tion due to speech can be removed using linear prediction (LP). 

To accomplish this shortening of the output autocorrelation 
function we develop a technique we call “correlation shaping”. In 
effect, we shape the processed autocorrelation sequence to have a 
desired response. For blind speech dereverberation, the desired 
response is zero at long lags. This, we show, has the intended effect 
of reducing the length of the equalized speaker-to-receiver impulse 
response. The result is that our proposed processing simultaneously 
improves audible quality and ASR accuracy blindly. 

3. CORRELATION SHAPING
Our proposed correlation shaping technique modifies the cor-

relation structure of the processed waveform, y . One or more in-
puts, cx , are modified using a set of adaptive linear filters, cg , to 
minimize the weighted mean square error between the actual output 
autocorrelation sequence, yyR , and the desired output autocorrela-
tion sequence, ddR . A set of feedback functions continuously ad-
justs the individual equalizing filters to perform this minimization. 
The block diagram of a 2-channel implementation of this approach 
is shown in Figure 2. The actual system is not limited solely to 
2 channels, but can be generalized to any number of inputs. 

The adaptive filter we employ uses a gradient descent ap-
proach  to accomplish this minimization. The gradient takes on a 
simple form, relying only on the autocorrelation of the output, yyR ,
the crosscorrelation between the output and input, 

cyxR , and the 
desired output autocorrelation, ddR .

Update Equation 
The multichannel input sequence ( )cx n  has a corresponding 

autocorrelation sequence ( )
c cx xR  given by 

( ) ( ) ( )
c cx x c cn

R x n x n= . (2) 

The correlation shaping approach will be implemented as a multi-
input single-output linear filter expressed as follows 

( ) ( ) ( )
1
0

C T
c cc

y n n n
=

= g x . (3) 

The output signal, ( )y n , has a corresponding autocorrelation se-
quence given by ( )yyR

( ) ( ) ( )yy n
R y n y n= . (4) 

The goal of our proposed correlation shaping approach is to mini-
mize the weighted mean square error between ( )yyR  and the 
autocorrelation shape we desire, ( )ddR . This error is given by 

( ) ( ) ( ) ( )( )2yy dde W R R= , (5) 
where ( )W  is a real valued weight. A large positive of ( )W
gives more importance to the error at a particular lag, . To com-
pute the gradient that minimizes ( )e  with respect to the filter 
coefficients, evaluate the partial derivative of the error with respect 
to the filter, 

( )

( )
( ) ( ) ( )( )

( )

( )
2 yy

yy dd
c c

Re
W R R

g l g l
= . (6) 

we obtain the gradient for each filter coefficient. The gradient is 
given by 
( ) ( ) ( ) ( )( ) ( ) ( )( )c cyy dd x y x yl W R R R l R l= + +  (7) 

This gradient will be used in the following update equation to per-
form correlation shaping, 

( ) ( ) ( ), 1 ,c c cg l n g l n lµ+ = + . (8) 
This update equation is used in the system shown in Figure 2. 

This system can be readily generalized to any number of inputs. 

Don’t Care Region 
A don’t care region can be introduced in the correlation shap-

ing technique similar to that used in BWLLS (from [1]) equaliza-
tion. In this case, we use a don’t care region for autocorrelation lags 
close to the zeroth lag. The lags from, say, 1 to Z  and 1 to Z
are given a weight of 0, and everywhere else is given a weight of 1. 
In addition ddR  is 0 for all lags except the zeroth, which is given a 
weight of 1.With these two constraints, we can modify the gradient 
given in Equation (7). We can neglect the term corresponding to 

0=  in Equation (7), as this is to control the value of the zeroth 
lag of the output autocorrelation function. Since the zeroth lag af-
fects only the energy in the output waveform the exact value is 
unimportant. It is only important that it be nonzero. This can be 
addressed by normalizing the update equation. Furthermore, due to 
the symmetry in Equation (7), the sum only needs to be evaluated 
for positive values of . The final expression is given by 

( ) ( )( ) ( ) ( )( )c cyy x y x y
Z

l R R l R l
>

= + + . (9) 

The filter design equation becomes 

( ) ( )
( )

( )
2

, 1 , c
c c

c
c l

l
g l n g l n

l
µ+ = + . (10) 

The term in the denominator serves two purposes. It provides the 
normalization we require to remove the summation due to the ze-
roth lag. It also normalizes the gradient, improving the convergence 
properties in a manner similar to Normalized LMS. 

Correlation Shaping for Speech Dereverberation 
Correlation shaping suppresses the long-term correlation en-

ergy in the received waveform. Since the reverberated speech wave-
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Figure 2: Block diagram for the 2-channel correlation shaping algorithm. This 
directly extends to any number of channels. 
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form contains correlation due to both speech production and room 
reverberation, applying our correlation shaping approach attempts 
to remove both the correlation due to speech and correlation due to 
the room. 

To overcome this, we propose to remove the correlation due to 
speech prior to processing with our correlation shaping technique. 
We show that the LP residual of reverberant speech contains most 
of the correlation from the room but very little of the correlation 
from speech. Thus, processing the LP residual of reverberant 
speech using our correlation shaping technique does not remove the 
vital speech correlation. It instead removes only the correlation due 
to reverberation. 

The top subplot in Figure 3 shows the autocorrelation of a sin-
gle channel of the speaker-to-receiver impulse response from the 
small office environment described in [1]. This is the true autocor-
relation of the speaker-to-receiver impulse response. The middle 
subplot of Figure 3 shows the autocorrelation of the LP residual of 
clean speech (FAKS0) convolved with the speaker-to-receiver im-
pulse response. Not surprisingly, the autocorrelation of the LP re-
sidual of clean speech convolved with the speaker-to-receiver im-
pulse response was very similar to the autocorrelation of the 
speaker-to-receiver impulse response alone. The correlation coeffi-
cient between the two is 0.98, demonstrating the high degree of 
similarity. This confirms that the LP residual of clean speech is 
approximately white. The lower subplot of Figure 3 shows the auto-
correlation of the LP residual of reverberant speech (using the same 
speaker-to-receiver impulse response). The autocorrelation of the 
LP residual of reverberant speech and the autocorrelation of the 
speaker-to-receiver impulse response has significant structural simi-
larity. The correlation coefficient between the two is 0.95. 

Broadly speaking, the LP analysis of reverberant speech sepa-
rates the correlation due to the speech and the correlation due to the 
vocal tract. The LP coefficients generally contain most of the in-
formation about the vocal tract, while the LP residual contains most 
of the information about reverberation. The residual could be proc-
essed to remove most of the long-term correlation. The cleaned 
speech waveform could be reconstructed using the modified LP 
residual and original LP coefficients. Unfortunately, structuring the 
algorithm in this manner has a significant drawback. As pointed out 
in [7] this structure causes LP reconstruction artifacts that result in 

an unnatural sounding degradation of the audible waveform. 
A better approach is to use the double filtering technique pro-

posed in [7]. Processing is broken into two separate, but connected 
paths. In one path, the LP residual is processed. In [7] processing 
was done to maximize kurtosis. Here, we process the LP residual to 
remove long-term correlation. The adaptive filter continuously tries 
to suppress the long-term correlation energy in the LP residual. At 
every time instant, the filter coefficients in this path are copied to 
corresponding filters in the second path. The filters in this second 
path are applied to the reverberated speech waveform. This avoids 
reconstruction artifacts, while at the same time removing the long-
term correlation present in the LP residual of reverberant speech. A 
block diagram of the proposed system is shown in Figure 4. The 
update equations are the same as before, the only change is that the 
LP residual is processed instead of the original waveform. 

4. EXPERIMENTS
We now evaluate the performance of our proposed correlation 

shaping approach. The full TIMIT testset corpus was used as our 
clean speech database. The same set of 4 speaker-to-receiver im-
pulse responses described in [1] will be used to corrupt the clean 
testset. To simulate reverberant speech the full clean TIMIT testset 
will be convolved with each of the speaker-to-receiver impulse 
responses. This gives 4 separate reverberant waveforms for each 
speech example, simulating a 4-channel microphone array. 

ASR Accuracy 
To evaluate the ASR accuracy of reverberant speech processed 

with our correlation shaping technique we used both the Microsoft 
Speech SDK 5.0 and the IBM ViaVoice 8.0 recognizer. We pro-
vided no additional “out-of-box” training to the system, and all 
online adaptation was disabled. This ensured that the ASR systems 
remained as general as possible. 

ASR accuracy (Table 1) for the clean testset was 58.8% with 
the Microsoft recognizer and 66.0% with the IBM recognizer. Since 
the ASR systems received no “out of the box” training, there is a 
mismatch between training and testing conditions. This was the 
primary reason for the low ASR accuracy. 

An unprocessed single channel of reverberant speech reduced 
the ASR accuracy to 28.7% for the Microsoft recognizer and to 
28.6% for the IBM recognizer (Table 1). To measure the improve-
ment in ASR accuracy using a delay-sum (DS) preprocessor [8], the 
reverberant speech is processed by a 2, 3, and 4-element delay-sum 
array. Results are shown in Table 2. 

Reverberant speech was processed with our 4-channel correla-
tion shaping technique (i.e. the system shown in Figure 4) The 
equalizing filters, cg , had 1000 taps per channel and the learning 
rate was fixed at 3e-4. The processing was repeated for a variety of 
don’t care region durations. Table 3 shows the SRR and RT60 for 
these various durations. Table 3 also shows the ASR accuracy as a 

-0.2

0

0.2

-0.2

0

0.2

N
or

m
al

iz
ed

 A
ut

oc
or

re
la

tio
n

0 0.0063 0.0125 0.025 0.05

-0.2

0

0.2

Time (sec)

Figure 3: (Top) Normalized Autocorrelation of the speaker-to-receiver impulse 
response from the small office environment, (consider this the ground truth). 
(Middle) Normalized Autocorrelation of the LP residual of clean speech con-
volved with the speaker-to-receiver impulse response from the small office envi-
ronment. (Bottom) Normalized Autocorrelation of the LP residual of reverberant 
speech (this is the realistic scenario). 
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Figure 4: Block diagram for the 2-channel correlation shaping based speech en-
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function of the don’t care region. We do not show the ASR accu-
racy of the output as it was adapting, but rather show the accuracy 
of the reverberant speech processed with the final converged filter. 
Using the Microsoft recognizer, reverberant speech processed with 
a 4-channel correlation shaping preprocessor with a don’t care re-
gion of 0.0187 s gave a 33% better accuracy than the same speech 
processed with the 4-channel DS beamformer. Using the IBM rec-
ognizer the gain in the same situation was 42% 

Audible Quality 
The audible quality of this speech dereverberation technique 

was evaluated by subjective testing. The experimental protocol was 
as follows 

3-second sound clips from 8 speakers in the TIMIT dataset 
were used for testing. The speakers were the following: 
FADG0, FAKS0, FCMH0, FCMR0, MTLS0, MWBT0, 
MWJG0, and MWVW0. 
Six variations of each three second clip were generated, 1) the 
original clean clip, 2) the reverberated single channel, 3) the 
4 reverberated channels processed by the DS array, 4) the 
4 reverberated channels processed by the correlation shaping 
approach with a don’t care region of 0.0 s 5) 0.0187 s, and 
6) 0.0375 s. 
Listeners were randomly presented with 2 variations of the 
same clip and asked to indicate which they preferred. They 
were not told to select which variation was less reverberant, 
only which variation they preferred. They could listen to each 
variation as many times as they liked. 
12 subjects participated in this test. The results are shown in 

Table 4. These results indicate that using our proposed correlation 
shaping technique with a don’t care region of 0.0187 s provides a 
significant improvement over an unprocessed single channel, and 
4-channel DS processing. 100% of the time the average listener 
preferred reverberant speech processed by the 4-channel correlation 
shaping equalizer with a don’t care region of 0.0187 s to the un-
processed speech. The speech processed with a 4-channel correla-
tion shaping equalizer with a don’t care region of 0.0187 s was also 
superior to 4-channel DS equalization, 90% of the time (7.2 out of 
8 speakers) the average listener preferred correlation shaping. In 
addition using the correlation shaping technique with a don’t care 
region of 0.0187 s gave better audio quality than the same technique 
using either a don’t care region of 0.0 s or 0.0375  

5. SUMMARY
Here we developed a blind approach to speech dereverberation 

that reduces the length of the equalized speaker-to-receiver impulse 
response. The approach reduces the long-term correlation in the LP 

residual of reverberant speech. We have shown that this correlation 
shaping approach can simultaneously improve both the audible 
quality and ASR accuracy of reverberant speech. 

Using the Microsoft recognizer, reverberant speech processed 
with 4-channel correlation shaping (0.0187 s) provided a 60% 
relative gain in ASR accuracy over an unprocessed reverberant 
channel alone, while the same reverberant speech processed 
with a 4-channel DS array provided only a 20% improvement. 
Under the same conditions, but with the IBM recognizer, rever-
berant speech processed with 4-channel correlation shaping 
(0.0187 s) provided a 68% relative gain in ASR accuracy over 
an unprocessed reverberant channel alone, while the same re-
verberant speech processed with a 4-channel DS array provided 
only a 18% improvement. 
In addition, reverberant speech processed with 4-channel cor-

relation shaping (0.0187 s) was shown provided superior audio 
quality to either 4-channel DS processing or an unprocessed single 
channel.
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Table 1: ASR accuracy of the clean TIMIT dataset and a single unprocessed 
reverberant channel using the Microsoft and IBM ASR systems. 

 Clean Single Reverberant Channel 

Accuracy (MS) 58.8% 28.7% 

Accuracy (IBM) 66.0% 28.6% 

Table 2: Accuracy of the TIMIT data using delay-sum processing. 
 2-channels 3-channels 4-channels 

Accuracy (MS) 30.6% 33.4% 34.5% 

Accuracy (IBM) 31.3% 32.7% 33.8% 

Table 3: SRR, RT60, and ASR accuracy using 4-channel correlation shaping. 
 Don’t Care Region 

 0.0 s 0.0063 s 0.0125 s 0.0187 s 0.025 s 0.0313 s 

SRR (dB) 1.62 0.59 0.00 0.05 0.19 0.30

RT60 (s) 0.31 0.29 0.24 0.22 0.20 0.19 

Accuracy (MS) 40.7% 43.0% 45.6% 45.9% 44.3% 42.8% 

Accuracy (IBM) 42.3% 43.8% 47.9% 48.0% 45.9% 44.6% 

Table 4: Result for the average listener on the subjective test. Scores are reported 
as the percentage of the time the average listener preferred A to B over the eight 
different clips each listener is asked to compare. 
Percentage of sound clips for which the average listener … mean sd 

preferred Correlation Shaping (0.0187 s) to Unprocessed Single Channel 100% 0% 

preferred Correlation Shaping (0.0187 s) to 4-channel DS 90% 12% 

preferred Correlation Shaping (0.0187 s) to Clean 2% 5% 

preferred Correlation Shaping (0.0187 s) to Correlation Shaping (0.0 s)  79% 15% 

preferred Correlation Shaping (0.0187 s) to Correlation Shaping (0.0375 s) 81% 10% 

preferred DS to Unprocessed Single Channel 98% 5% 

preferred DS to Clean 0% 0% 

preferred Clean to Unprocessed Single Channel 100% 0% 
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