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ABSTRACT

We showed in [1] that penalizing long-term reverberation en-
ergy is more effective than maximizing the signal-to-reverberation
ratio (SRR) for improving audible quality and automatic speech
recognition (ASR) accuracy. Using this knowledge we propose a
blind approach to speech dereverberation that reduces the length of
the equalized speaker-to-receiver impulse response. The approach
reduces the long-term correlation in the linear prediction (LP) re-
sidual of reverberant speech. We show that this approach improves
both the audible quality (measured with subjective listening tests)
and ASR accuracy (measured with two commercial ASR systems)
of reverberant speech.

1. BACKGROUND
The quality of speech captured by personal computers in real-
world environments is invariably degraded by acoustic interference.
This interference can be broadly classified into two distinct catego-
ries: additive and convolutional.

A received speech signal, z(n>, can be modeled as

zen =1l s + wand, 1)

where the clean speechis s(n> = [s(n — M + 1)...s<n>}T . Cor-
rupting this clean speech waveform is additive noise given by,
wcn>, and time varying convolutional interference,
rcny = [r(0,n)...r(M —1n)]".

Additive noise can be significantly reduced by spectral sub-
traction or similar techniques (see for example [2] and references
therein). These approaches have been successful, and are used in
commercial products.

The still existing convolutional interference problem can be
modeled as r<n>, an M -tap acoustic impulse response. Typical
causes of this convolutional distortion are room and microphone
effects. When rn> is caused by room effects it is commonly re-
ferred to as reverberation. The focus of this work is developing a
system for mitigating the effects of reverberation in captured speech
to improve audible quality and ASR accuracy.

It appears easy enough to remove reverberation: estimate the
speaker-to-receiver filter, r (n>, and then design an L -tap inverse
filter gcn> toundo its effects: yn> = g’ (n>xn> . From linear-
ity, we can speak of an equalized source-to-receiver impulse re-
sponse, h(n>, that captures the combined effects of r<n> and
gno . If gcn> perfectly equalizes the speaker-to-receiver impulse
response then h(n> is a delta function and ycn> = scn> (ne-
glecting additive noise in the received signal). Although this sounds
simple, it is difficult in practice; r(n> must be estimated blindly
from only the received signal(s). Further complicating matters,
r(n> is often plagued by zeros near the unit circle, making inver-
sion difficult [3]. Finally, r<n> is well modeled as an finite im-
pulse response (FIR) filter [4]. As such rn> can only be inverted
by a corresponding infinite impulse response (IIR) filter. To avoid
using IIR inverse filters, most researchers use long FIR filters [5].
The requirement of an IIR inverse is only applicable in a single
microphone input system, there is no such IIR constraint on multi-
ple input single output systems.
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It is possible to exploit multiple microphones to make the
problem somewhat more tractable. We experimentally showed
in [1] that multiple microphones are necessary for complete equali-
zation of the speaker-to-receiver impulse response. Furthermore, if
complete equalization is not possible, penalizing long-term
reverberation energy was shown to be more effective than
maximizing the signal-to-reverberation ratio (SRR) for improving
audible quality and ASR accuracy. Using this knowledge we
proposed a nonblind equalizing strategy for reverberant speech. The
performance of this approach was shown to exceed traditional
speech enhancement techniques.

In a real system, we do not have the luxury of direct access to
the speaker-to-receiver impulse response. Without this, the ap-
proach proposed in [1] (WLLS equalization) has limited applicabil-
ity. Here we propose a new blind approach to speech dereverbera-
tion. This approach reduces the length of the equalized speaker-to-
receiver impulse response. We show that this approach can improve
both the audible quality and ASR accuracy of reverberant speech.

2. INTRODUCTION

Given a reverberated speech waveform, estimating the
speaker-to-receiver impulse response is exceedingly difficult. If
accurate estimates were available, the speaker-to-receiver impulse
response could be directly equalized with a linear least squares
(LLS) equalizer (or, as we have shown [1], more preferably a
weighted linear least squares (WLLS) equalizer). Unfortunately, in
practice, current techniques are not particularly effective at estimat-
ing the speaker-to-receiver impulse responses from reverberant
speech [6].

Our goal is to mitigate the effects of reverberation by shorten-
ing the equalized speaker-to-receiver impulse response. What then
can be done with access only to the received reverberant waveform?

Compare in Figure 1, the equalized speaker-to-receiver im-
pulse responses (obtained in our previous work [1]) and their corre-
sponding autocorrelations for a variety of processing approaches.
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Figure 1: Comparison of the speaker-to-receiver impulse response and the auto-
correlation of the speaker-to-receiver impulse response from (left) unprocessed
single channel, (middle) 1-channel LLS equalized response, and (right) the
1-channel WLLS equalized response. The BWLLS equalizer reduced the energy at
longer lags in the autocorrelation compared with either the unprocessed single
channel or LLS equalized response.
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Specifically compare that obtained using 1-channel binary weighted
linear least squares (BWLLS) equalization to that obtained using
either no processing or 1-channel LLS processing. As we have seen
in [1], the WLLS processed speaker-to-receiver impulse response
had less long-term reverberation energy than either the original
impulse response or the impulse response corresponding to LLS
processing. In addition, the corresponding autocorrelation sequence
also had less energy at longer lags than either the original impulse
response or the impulse response corresponding to LLS processing.
This reduced energy in the autocorrelation sequence is a direct con-
sequence of the reduced long-term reverberation energy in the
equalized speaker-to-receiver impulse response. We showed in [1]
that this shortening of the equalized speaker-to-receiver impulse
response translates to improved audible quality and ASR accuracy.

Since direct estimation of the speaker-to-receiver impulse re-
sponse is difficult, we instead propose to reduce the long-term cor-
relation energy in the received reverberant waveform. The basic
idea is this: WLLS processing explicitly reduces the long-term re-
verberation energy in the equalized speaker-to-receiver impulse
response. Indirectly, the correlation energy at long lags is also re-
duced. In our proposed blind approach, we instead explicitly reduce
the correlation energy at long lags. This indirectly shortens the
equalized speaker-to-receiver impulse response.

Most of the long-term correlation that exists in reverberant
speech is due to the speaker-to-receiver impulse response, very little
is due to the correlation in speech. Furthermore, most of the correla-
tion due to speech can be removed using linear prediction (LP).

To accomplish this shortening of the output autocorrelation
function we develop a technique we call “correlation shaping”. In
effect, we shape the processed autocorrelation sequence to have a
desired response. For blind speech dereverberation, the desired
response is zero at long lags. This, we show, has the intended effect
of reducing the length of the equalized speaker-to-receiver impulse
response. The result is that our proposed processing simultaneously
improves audible quality and ASR accuracy blindly.

3. CORRELATION SHAPING

Our proposed correlation shaping technique modifies the cor-
relation structure of the processed waveform, y. One or more in-
puts, z,, are modified using a set of adaptive linear filters, g, to
minimize the weighted mean square error between the actual output
autocorrelation sequence, R, , and the desired output autocorrela-
tion sequence, R, . A set of feedback functions continuously ad-
justs the individual equalizing filters to perform this minimization.
The block diagram of a 2-channel implementation of this approach
is shown in Figure 2. The actual system is not limited solely to
2 channels, but can be generalized to any number of inputs.

The adaptive filter we employ uses a gradient descent ap-
proach to accomplish this minimization. The gradient takes on a
simple form, relying only on the autocorrelation of the output, R, ,
the crosscorrelation between the output and input, R, , and the
desired output autocorrelation, R, .

YT, >

Update Equation
The multichannel input sequence z,. (n> has a corresponding
autocorrelation sequence R, , (7> given by

Ry () =Y w(ma,(n—T). )

The correlation shaping approach will be implemented as a multi-
input single-output linear filter expressed as follows

Cc-1
y(n):z(:ogg(n)xc(n). 3)

The output signal, yn> , has a corresponding autocorrelation se-
quence given by R, (7>

Ry =" yoym —1>. “)

The goal of our proposed correlation shaping approach is to mini-
mize the weighted mean square error between R,, (7> and the
autocorrelation shape we desire, Ry, ¢7> . This error is given by

ecty =W (R, (T)*R(M(T))z, (5)

]
where W (7> is areal valued weight. A large positive of W (7>

gives more importance to the error at a particular lag, 7 . To com-
pute the gradient that minimizes ec7> with respect to the filter
coefficients, evaluate the partial derivative of the error with respect
to the filter,

decr> OR,, <>
=2W (7> — Ryg o) — 24— 6
og.(ny ~ 2 T U D= Ru )5 e ©
we obtain the gradient for each filter coefficient. The gradient is
given by
V() =3 W (Ry < = Rygm)(Ryy (1= 7) + Ry (14 7)) (7)
This gradient will be used in the following update equation to per-
form correlation shaping,
ge (hn +1) = g.(L,n) + pV.(1). (®)
This update equation is used in the system shown in Figure 2.
This system can be readily generalized to any number of inputs.

Don’t Care Region
A don’t care region can be introduced in the correlation shap-
ing technique similar to that used in BWLLS (from [1]) equaliza-
tion. In this case, we use a don’t care region for autocorrelation lags
close to the zeroth lag. The lags from, say, 1 to Z and —1to —Z
are given a weight of 0, and everywhere else is given a weight of 1.
In addition R4, is O for all lags except the zeroth, which is given a
weight of 1.With these two constraints, we can modify the gradient
given in Equation (7). We can neglect the term corresponding to
7 = 0 in Equation (7), as this is to control the value of the zeroth
lag of the output autocorrelation function. Since the zeroth lag af-
fects only the energy in the output waveform the exact value is
unimportant. It is only important that it be nonzero. This can be
addressed by normalizing the update equation. Furthermore, due to
the symmetry in Equation (7), the sum only needs to be evaluated

for positive values of 7 . The final expression is given by
V()= Z(Ryy(ﬂ)(RI’y(l —-T)+ R, (l+7)). 9

T>7
The filter design equation becomes

V. ()

g (bn +1) = g, (Ln) + p——=rr—.
/ZXWAU
c 1

The term in the denominator serves two purposes. It provides the
normalization we require to remove the summation due to the ze-
roth lag. It also normalizes the gradient, improving the convergence
properties in a manner similar to Normalized LMS.

(10)

Correlation Shaping for Speech Dereverberation
Correlation shaping suppresses the long-term correlation en-
ergy in the received waveform. Since the reverberated speech wave-
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Figure 2: Block diagram for the 2-channel correlation shaping algorithm. This
directly extends to any number of channels.

I-677




form contains correlation due to both speech production and room
reverberation, applying our correlation shaping approach attempts
to remove both the correlation due to speech and correlation due to
the room.

To overcome this, we propose to remove the correlation due to
speech prior to processing with our correlation shaping technique.
We show that the LP residual of reverberant speech contains most
of the correlation from the room but very little of the correlation
from speech. Thus, processing the LP residual of reverberant
speech using our correlation shaping technique does not remove the
vital speech correlation. It instead removes only the correlation due
to reverberation.

The top subplot in Figure 3 shows the autocorrelation of a sin-
gle channel of the speaker-to-receiver impulse response from the
small office environment described in [1]. This is the true autocor-
relation of the speaker-to-receiver impulse response. The middle
subplot of Figure 3 shows the autocorrelation of the LP residual of
clean speech (FAKSO0) convolved with the speaker-to-receiver im-
pulse response. Not surprisingly, the autocorrelation of the LP re-
sidual of clean speech convolved with the speaker-to-receiver im-
pulse response was very similar to the autocorrelation of the
speaker-to-receiver impulse response alone. The correlation coeffi-
cient between the two is 0.98, demonstrating the high degree of
similarity. This confirms that the LP residual of clean speech is
approximately white. The lower subplot of Figure 3 shows the auto-
correlation of the LP residual of reverberant speech (using the same
speaker-to-receiver impulse response). The autocorrelation of the
LP residual of reverberant speech and the autocorrelation of the
speaker-to-receiver impulse response has significant structural simi-
larity. The correlation coefficient between the two is 0.95.

Broadly speaking, the LP analysis of reverberant speech sepa-
rates the correlation due to the speech and the correlation due to the
vocal tract. The LP coefficients generally contain most of the in-
formation about the vocal tract, while the LP residual contains most
of the information about reverberation. The residual could be proc-
essed to remove most of the long-term correlation. The cleaned
speech waveform could be reconstructed using the modified LP
residual and original LP coefficients. Unfortunately, structuring the
algorithm in this manner has a significant drawback. As pointed out
in [7] this structure causes LP reconstruction artifacts that result in
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Figure 3: (Top) Normalized Autocorrelation of the speaker-to-receiver impulse
response from the small office environment, (consider this the ground truth).
(Middle) Normalized Autocorrelation of the LP residual of clean speech con-
volved with the speaker-to-receiver impulse response from the small office envi-
ronment. (Bottom) Normalized Autocorrelation of the LP residual of reverberant
speech (this is the realistic scenario).

an unnatural sounding degradation of the audible waveform.

A better approach is to use the double filtering technique pro-
posed in [7]. Processing is broken into two separate, but connected
paths. In one path, the LP residual is processed. In [7] processing
was done to maximize kurtosis. Here, we process the LP residual to
remove long-term correlation. The adaptive filter continuously tries
to suppress the long-term correlation energy in the LP residual. At
every time instant, the filter coefficients in this path are copied to
corresponding filters in the second path. The filters in this second
path are applied to the reverberated speech waveform. This avoids
reconstruction artifacts, while at the same time removing the long-
term correlation present in the LP residual of reverberant speech. A
block diagram of the proposed system is shown in Figure 4. The
update equations are the same as before, the only change is that the
LP residual is processed instead of the original waveform.

4. EXPERIMENTS

We now evaluate the performance of our proposed correlation
shaping approach. The full TIMIT testset corpus was used as our
clean speech database. The same set of 4 speaker-to-receiver im-
pulse responses described in [1] will be used to corrupt the clean
testset. To simulate reverberant speech the full clean TIMIT testset
will be convolved with each of the speaker-to-receiver impulse
responses. This gives 4 separate reverberant waveforms for each
speech example, simulating a 4-channel microphone array.

ASR Accuracy

To evaluate the ASR accuracy of reverberant speech processed
with our correlation shaping technique we used both the Microsoft
Speech SDK 5.0 and the IBM ViaVoice 8.0 recognizer. We pro-
vided no additional “out-of-box” training to the system, and all
online adaptation was disabled. This ensured that the ASR systems
remained as general as possible.

ASR accuracy (Table 1) for the clean testset was 58.8% with
the Microsoft recognizer and 66.0% with the IBM recognizer. Since
the ASR systems received no “out of the box” training, there is a
mismatch between training and testing conditions. This was the
primary reason for the low ASR accuracy.

Anunprocessed single channel of reverberant speech reduced
the ASR accuracy to 28.7% for the Microsoft recognizer and to
28.6% for the IBM recognizer (Table 1). To measure the improve-
ment in ASR accuracy using a delay-sum (DS) preprocessor 8], the
reverberant speech is processed by a 2, 3, and 4-element delay-sum
array. Results are shown in Table 2.

Reverberant speech was processed with our 4-channel correla-
tion shaping technique (i.e. the system shown in Figure 4) The
equalizing filters, g, had 1000 taps per channel and the learning
rate was fixed at 3¢™. The processing was repeated for a variety of
don’t care region durations. Table 3 shows the SRR and RTg, for
these various durations. Table 3 also shows the ASR accuracy as a
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Figure 4: Block diagram for the 2-channel correlation shaping based speech en-
hancement algorithm. This directly extends to any variety of channels.
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Table 1: ASR accuracy of the clean TIMIT dataset and a single unprocessed
reverberant channel using the Microsoft and IBM ASR systems.

Clean Single Reverberant Channel
Accuracy (MS) 58.8% 28.7%
Accuracy (IBM) 66.0% 28.6%
Table 2: Accuracy of the TIMIT data using delay-sum processing.
2-ch 1 3-ch 1 4-channels
Accuracy (MS) 30.6% 33.4% 34.5%
Accuracy (IBM) 31.3% 32.7% 33.8%

function of the don’t care region. We do not show the ASR accu-
racy of the output as it was adapting, but rather show the accuracy
of the reverberant speech processed with the final converged filter.
Using the Microsoft recognizer, reverberant speech processed with
a 4-channel correlation shaping preprocessor with a don’t care re-
gion of 0.0187 s gave a 33% better accuracy than the same speech
processed with the 4-channel DS beamformer. Using the IBM rec-
ognizer the gain in the same situation was 42%

Audible Quality
The audible quality of this speech dereverberation technique

was evaluated by subjective testing. The experimental protocol was
as follows

o 3-second sound clips from 8 speakers in the TIMIT dataset
were used for testing. The speakers were the following:
FADGO, FAKS0O, FCMHO, FCMRO, MTLS0, MWBTO,
MWIJGO0, and MWV WO.
Six variations of each three second clip were generated, 1) the
original clean clip, 2) the reverberated single channel, 3) the
4 reverberated channels processed by the DS array, 4) the
4 reverberated channels processed by the correlation shaping
approach with a don’t care region of 0.0 s 5) 0.0187 s, and
6) 0.0375 s.
Listeners were randomly presented with 2 variations of the
same clip and asked to indicate which they preferred. They
were not told to select which variation was less reverberant,
only which variation they preferred. They could listen to each
variation as many times as they liked.

12 subjects participated in this test. The results are shown in
Table 4. These results indicate that using our proposed correlation
shaping technique with a don’t care region of 0.0187 s provides a
significant improvement over an unprocessed single channel, and
4-channel DS processing. 100% of the time the average listener
preferred reverberant speech processed by the 4-channel correlation
shaping equalizer with a don’t care region of 0.0187 s to the un-
processed speech. The speech processed with a 4-channel correla-
tion shaping equalizer with a don’t care region 0of 0.0187 s was also
superior to 4-channel DS equalization, 90% of the time (7.2 out of
8 speakers) the average listener preferred correlation shaping. In
addition using the correlation shaping technique with a don’t care
region of 0.0187 s gave better audio quality than the same technique
using either a don’t care region of 0.0 s or 0.0375

5. SuMMARY
Here we developed a blind approach to speech dereverberation
that reduces the length of the equalized speaker-to-receiver impulse
response. The approach reduces the long-term correlation in the LP

Table 3: SRR, RT, and ASR accuracy using 4-channel correlation shaping.
Don’t Care Region

0.0s 0.0063s  0.0125s  0.0187s  0.025s  0.0313 s

SRR (dB) 1.62 0.59 0.00 -005  -0.19  -0.30
RT(s) 031 0.29 0.24 0.22 0.20 0.19
Accuracy (MS) 40.7% 43.0%  45.6%  459%  443%  42.8%

Accuracy (IBM) 42.3% 43.8% 47.9% 48.0% 45.9% 44.6%

Table 4: Result for the average listener on the subjective test. Scores are reported
as the percentage of the time the average listener preferred A to B over the eight
different clips each listener is asked to compare.

Percentage of sound clips for which the average listener ... mean sd

preferred Correlation Shaping (0.0187 s) to Unprocessed Single Channel 100% 0%
preferred Correlation Shaping (0.0187 s) to 4-channel DS 90%  12%
preferred Correlation Shaping (0.0187 s) to Clean 2% 5%
preferred Correlation Shaping (0.0187 s) to Correlation Shaping (0.0 s) 79%  15%
preferred Correlation Shaping (0.0187 s) to Correlation Shaping (0.0375 s) 81% 10%
preferred DS to Unprocessed Single Channel 98% 5%
preferred DS to Clean 0% 0%
preferred Clean to Unprocessed Single Channel 100% 0%

residual of reverberant speech. We have shown that this correlation
shaping approach can simultaneously improve both the audible
quality and ASR accuracy of reverberant speech.

o Using the Microsoft recognizer, reverberant speech processed
with 4-channel correlation shaping (0.0187 s) provided a 60%
relative gain in ASR accuracy over an unprocessed reverberant
channel alone, while the same reverberant speech processed
with a 4-channel DS array provided only a 20% improvement.
Under the same conditions, but with the IBM recognizer, rever-
berant speech processed with 4-channel correlation shaping
(0.0187 s) provided a 68% relative gain in ASR accuracy over
an unprocessed reverberant channel alone, while the same re-
verberant speech processed with a 4-channel DS array provided
only a 18% improvement.

In addition, reverberant speech processed with 4-channel cor-
relation shaping (0.0187 s) was shown provided superior audio
quality to either 4-channel DS processing or an unprocessed single
channel.
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