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ABSTRACT

Distant-talking speech recognition in noisy environmentsisindis-
pensable for self-moving robots or tele-conference systems. How-
ever, background noise and room reverberations seriously degrade
the sound-capture quality in real acoustic environments. A micro-
phonearray isanideal candidate as an effective method for captur-
ing distant-talking speech. AMNOR (Adaptive Microphone-array
for NOise Reduction) was proposed as an adaptive beamformer
for capturing the desired distant signals in noisy environments by
Kaneda et a. Although the AMNOR has been proven effective, it
can be further improved if we know the spectrum characteristics
of the desired distant signals in advance. Therefore, we regarded
speech as adesired distant signal and designed an AMNOR based
on the average speech spectrum. In this paper, we particularly fo-
cused on the performance of AMNOR based on the average speech
spectrum for distant-talking speech capture and recognition. Asa
result of evaluation experimentsin real acoustic environments, we
confirmed that the ASR (Automatic Speech Recognition) perfor-
mance was improved 5 — 10% by using an AMNOR based on the
average speech spectrum in noisy environments. In addition, the
proposed AMNOR provides better noise reduction performance
than that of conventional AMNOR.

1. INTRODUCTION

To capture and recognize distant-talking speech is one of the most
important functions for achieving natural interfaces for machines
such as self-moving robots. However, background noise and room
reverberations seriously degrade the sound capture quality in real
acoustic environments. A microphone array is an ideal candidate
for capturing distant-talking speech. With a microphone array, a
desired speech signal can be selectively acquired by steering the
directivity. Accordingly, super-high directivity is necessary to re-
duce noise signals.

To form directivity, delay-and-sum beamformers [1, 2] and
adaptive beamformers [3, 4] have been proposed as conventional
beamformers. A delay-and-sum beamformer forms super-high di-
rectivity to the desired signal, and an adaptive beamformer forms
null directivity to the noise signal. However, delay-and-sum beam-
formers have two serious drawbacks: the performance is not good
enough to capture the desired signal without a sufficient number
of transducers, and performance degrades in highly reverberant
rooms. On the other hand, adaptive beamformers can form null
directivity with a small number of transducers. Furthermore, they
can form sharper directivity than the delay-and-sum beamformer.
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Figure 1. Block diagram of adaptive beamformer.

AMNOR (Adaptive Microphone-array for NOise Reduction)
is an adaptive beamformer proposed by Kaneda et al. in 1986[4].
This AMNOR is an effective beamformer for capturing and rec-
ognizing desired distant signals in noisy environments. Also, it
can be easily designed with an adaptive filter for noise reduction
in real environments because it only allows small distortion when
capturing the desired distant signal.

However, if we knew the spectrum characteristics of desired
distant signals before designing the adaptive filter of an AMNOR,
we could further improve its performance. The conventional AM-
NOR is designed to suppress the spectrum distortion of the desired
distant signal on all frequency bands. However, in many cases, the
purpose of signal capture is limited to speech capture. Therefore,
in this paper we regarded speech as the desired distant signal and
designed an AMNOR by using the speech spectrum for distant-
talking speech capture and recognition.

2. AMNOR (ADAPTIVE MICROPHONE-ARRAY FOR
NOISE REDUCTION)

Figure 1 shows a block diagram of the adaptive beamformer. In
Figure 1, S(w) is the Fourier transform of the desired signal and
Y (w) isthe Fourier transform of the output signal. The G, (w) is
the acoustic transfer function from the desired sound source to the
m-th microphone element and H.,, (w) is the frequency response
of the m-th filter. The frequency response F'(w) of the adaptive
beamformer to the desired signal is represented as

Fw) =) Gu(w)Hn(w), @
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Figure 2: Overview of AMNOR.

where M is the number of microphone elements. The concept of
the adaptive beamformer is to minimize the output noise energy
while constraining F'(w) to the desired frequency response. An
AMNOR [4] has the constraint shown in Equation (2):

D:/|1—F(w)|2dw <D. @)

This constraint attains maximum noise reduction while allowing
asmall distortion D in the frequency response to the desired sig-
nal. In this paper, we focus on suitable control of the admissible
distortion D in the frequency response for noisy speech recogni-
tion. Figure 2 shows a general overview of AMNOR. In Figure 2,
each VF1, AF, and VF2 isaFIR filter with M-input and 1-output.
The AF is an adaptive filter, and VF1 and VF2 are variable filters
that have the same filter coefficients as AF. A quasi-desired signal
s’ (k) isindispensable for designing the adaptive filter of an AM-
NOR because an AMNOR attains maximum noise reduction with
a quasi-desired signal and a noise signal from the environment.
The quasi-desired signal s’(k) derives As;(k — 75;) from ampli-
fier and timedelay 7s:,7 = 1,..., M, which is calculated subject
to the known desired sound source’'s DOA (Direction Of Arrival).
This situation assumes asimulation in which signal As’ (k) arrives
from the desired sound source with a known DOA to the micro-
phone array. In addition, the microphone only captures the noise
signa uni(k),i = 1,..., M (not including the desired signal),
and it isinput to the adaptive filter AF after adding it to the quasi-
desired signal As;(k — 7s;). The AF controls thefilter coefficients
based on e(k) asthe following Equation (3):

e(k) = As'(k —0) — y/'(k), ©)

where 7y is the constant delay for cause and effect. The es(k) is
calculated by using VF2 after designing the filter coefficients by
AF, and current distortion D is derived from Equation (4).

D =] es(k)/AJ2. 4

By comparing current distortion D and admissible distortion D,
amplitude A is renewed with the amplifier until D < D. In the
above agorithm, AMNOR attains higher noise reduction perfor-
mancein real acoustic environments.
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Figure 3: Spectrum of quasi-desired signal.

3. SUITABLE DESIGN OF AMNOR BASED ON
AVERAGE SPEECH SPECTRUM

The conventional AMNOR uses a white Gaussian signal that has
flat frequency characteristics as a quasi-desired signal in order to
suppress the spectrum distortion of the desired signal on al fre-
guency bands. However, in many cases, the purpose of signal cap-
ture is limited to speech capture. Therefore, if we knew the spec-
trum characteristics of desired distant signals in advance, it might
be possible to improve the performance of AMNOR by designing
a suitable adaptive filter for the environment. In this paper, we re-
gard speech as the desired distant signal and design an AMNOR
by using the speech spectrum for distant talking speech capture
and recognition. First, we calculate the average speech spectrum
weight by Equation (5):

L N
Wap() = 7 D> SP(win), ©®)

=1 n=1

where L represents the number of speech (words), N represents
the number of frames, S P, (w;n) represents the Fourier transform
of speech signed sp; (t), and W, (w) representsthe average speech
spectrum weight. The quasi-desired signal based on the average
speech spectrum is derived from weighting the white Gaussian
spectrum with the average speech spectrum weight W, (w). Fig-
ure 3 shows the spectrum of white Gaussian as the quasi-desired
spectrum for the conventional AMNOR and the spectrum of aver-
age speech weighted as quasi-desired spectrum for the proposed
AMNOR. Compared with the spectra in Figure 3, the average
speech weighted spectrum is enhanced at lower frequencies. We
attempted to improve the ASR (Automatic Speech Recognition)
performance by using the average speech spectrum weighted quasi-
desired signal for the proposed AMNOR, and this modified system
was named SSAMNOR.

In addition, we also investigated an average speech spectrum
weighted by the energy ratio equivalent for vowels and consonants
on each frame when estimating W, (w) in Equation (5). We fur-
ther considered a new spectrum weight defined by Equation (6).
This weight is capable of balancing the occurrence of vowel and
consonant frames.

Le Ny,
1/ 1 1
s = =\ P 5
wate) = 372w S snem
N,

Ly
Y Zsm(w;m), ©)

ly=1 n=1
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Table 1. Experimental conditions
Recor ding conditions

Reverberation time Ti60)=180 msec.
Microphone array Linear type 14 transducers,
2.83 cm spacing
Sampling frequency 12 kHz
Quantization 16 bit
Experimental conditionsfor ASR
Frame length 32 msec. (Frameinterval: 8 msec.)
HMM Gaussian mixture density
Number of state 3 state
Feature vector MFCC (16 orders, 4 mixtures),

AMFCC (16 orders, 4 mixtures),
Apower (1 order, 2 mixtures)
Aver age speech spectrum weight

Speech DB ATR speech DB SetA [5] and
ASJ continuous speech corpus [6]
Speech (L) 2620 words x 4 subjects and

150 sentences x 64 subjects
L.: 28156 phonemes,

N.: 94315 frames (= > Ni,)
L,: 23440 phonemes,

N,: 107085 frames (= >~ N;,)

Consonants (L., N.)

Vowels (Lo, N.)

Test data (Open)

Desired speech signal Speech: 216 words x 2 subjects
(1 femaeand 1 male)

Noise signal Femal e speech, male speech
or white Gaussian noise

SNR 3dB

where L, represents the number of vowels, L. represents the
number of consonants, V;,, represents the number of vowel frames
on each unit of speech (word), and IV, represents the number of
consonant frames on each unit of speech (word). We named the
system using this modified W, Normalized SAMNOR.

4. EVALUATION EXPERIMENTS

We performed the evaluation experimentsin areal acoustic room.
Particularly in this paper, we focus on the ASR (Automatic Speech
Recognition) performance and directivity pattern of each beam-
former.

4.1. Experimental conditions

Table 1 shows the experimental conditions, and Figure 4 shows
the experimental environment. The desired distant signal arrives
from the front direction (90 degrees), and the noise signal arrives
from the right and left directions (40 degrees and 120 degrees, re-
spectively). The distance between the sound source and the mi-
crophone array is two meters. The microphone array consists of
14 transducers and 2.83 cm spacing. In this environment and un-
der these conditions, we evaluated the ASR performance and the
directivity pattern of each beamformer.

4.2. Experimental resultsfor ASR performance

The ASR performance was eval uated by using WRR (Word Recog-
nition Rate). In addition, ASR performance was aso evaluated

5.83m

; Noise (120 degr ees)

Target Speech
(90 degrees)

4.22m
WEE'y

Q Noise (40 degr ees)

Figure 4: Experimental environment.

by using variations in the admissible distortion D (Equation (2)).
Figure 5 shows the maximum ASR performance with the opti-
mum admissible distortion D, which we manually selected from
experimental results (these results were reported in [7]). In this
experiment, the sound source position was known in advance of
designing the adaptation filter. In Figure 5, the three | eft bars show
the results in an environment of one desired speech [90 degrees
DOA(Direction Of Arrival)]. The three center bars show the re-
sults in an environment of one desired speech [90 degrees DOA]
and one noise (female speech [40 degrees DOA]).The three right
bars show the results in an environment of one desired speech [90
degrees DOA] and two noises (female speech [40 degrees DOA]
and white Gaussian signal [120 degrees DOA]).

The results of our evaluation experiments, we could confirm
that the average speech spectrum weighted AMNOR (SSAMNOR)
provides higher ASR performance than the conventional AMNOR.
We could confirm that the normalized speech spectrum weighted
AMNOR (Normalized SSAMNOR) ismore effective than the basic
S AMNOR. This is because the adaptive filter of the Normalized
S-AMNOR has amore grestly optimized energy balance between
vowels and consonants than that of SAMNOR.

In Figure 5, we show that if we estimate the optimum admis-
sible distortion D in advance, the ASR performance is improved
by 5 —10% by using the normalized speech spectrum weight in a
noisy environment.
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Figure 5. ASR performance with optimum admissible distor-
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Fjgure 6: Directivity pattern with optimum admissible distortion
D (Desired direction [desired speech]: 90 degrees, Null direction
[undesired noise (female speech)]: 40 degrees).

4.3. Experimental resultsfor directivity pattern

Figure 6 shows the directivity pattern obtained with conventional
AMNOR, SAMNOR, and Normalized SAMNOR. Inthisevalua-
tion experiment, the sound source position was known in advance
of designing the adaptation filter. The directivity pattern results
were aso for an environment of one desired speech [90 degrees
DOA] and one noise (femal e speech [40 degrees DOA]). Also, the
admissible distortion D was the same as that of the center three
barsin Figure 5, which is the optimum admissible distortion D for
ASR. We calculated the directivity pattern from signals made with
frequency band pass filters and white Gaussian noise. Frequency
band passfilters were designed for 0 Hz—500 Hz, 500 Hz — 1 kHz,
1kHz-2kHz, 2 kHz-3 kHz, 3kHz -4 kHz, 4 kHz -5 kHz, and
5 kHz — 6 kHz, respectively.

As aresult of our evaluation experiments, we could confirm

that the average speech spectrum weighted AMNOR (SSAMNOR)
provides better reduction performance of the noise signal [40 de-
grees DOA] than the conventional AMNOR. Moreover, by com-
paring the directivity pattern of SAMNOR and Normalized S
AMNOR in Figure 6(b) (c), we could confirm that Normalized
S-AMNOR has a sharper directivity pattern than basic SAMNOR
in higher frequency bands.

Through the described above eval uation experiments, we could
confirm that normalized average speech spectrum weighted AM-
NOR (Normalized SAMNOR) is more effective than the conven-
tional AMNOR and basic SAMNOR.

5. CONCLUSIONS

In this paper, we proposed a new AMNOR(Adaptive Microphone-
array for NOise Reduction) with an average speech spectrum weight
to improve ASR performance in noisy environments. As a re-
sult of evaluation experiments in real acoustic environments, we
confirmed that the ASR performance was improved and the di-
rectivity pattern was much sharper as a result of using the nor-
malized average speech spectrum weighted AMNOR (Normalized
S-AMNOR). In the future, we will improve ASR performance by
integrating the proposed AMNOR with talker localization [8] and
automatically estimating the optimum admissible distortion D for
ASR in noisy environments.
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