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ABSTRACT

Ambient noise (additive distortion) and microphonechanges
(convolutive distortion) are two sources of distortion that
may severely degrade speech recognition performance in
real operation environments. Simultaneously modeling the
two distortion sources has been a great challenge for ro-
bust speech recognition. A method, called JAC, that Jointly
compensates both Additive and Convolutive distortions is
presented. It uses two log-spectral domain components in
speech acoustic models to represent additive and convolu-
tive distortions. The method adapts HMM mean vectors
with a noise estimate and a channel estimate. The noise
estimate is calculated from the pre-utterance pause and the
channel estimate is calculated using an EM algorithm from
speech utterances produced in the distortion environment.
Evaluated on a noisy speech database recorded in-vehicle
with ahands-free distant microphonein several driving con-
ditions, the a gorithm reduces recognition word error ratein
typical operation conditions by an order of magnitude.

1. INTRODUCTION

A speech recognizer trained with office environment speech
data and operating in a different environment may fail due
to at least two distortion sources [1]: background noise and
microphone changes. Handling simultaneously the two is
critical to the performance.

Retraining the recognizer’s acoustic model using large
amount of training data collected under conditions as close
as possible to the testing data could reduce the recognition
faillure. There are several problems associated with such
approach, however. Thefirst is flat distribution and loss of
discrimination due to averaging over al conditions. The
second is the lack of ability to cover new types of noises
and unknown performance for unseen noises. Finaly, it is
impossible to separate the variabilities at the phonetic level
and at the acoustic level.

M odel adaptation approach by MAP (maximum a poste-
riori) [2] estimation or MLLR (maximum likelihood linear
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regression) [3] transforms HMM parameters to match the
distortion factors. It does not model explicitly channel and
background noise, but approximates their effect by piece-
wise linearity. When given enough data, it is effective for
both sources. However, typically, the approach requires ad-
ditional training data collected in the noisy environments, it
is optimal only under the type and the intensity of the dis-
tortion of the training data, it may introduce dependence to
the speaker who providesthe training data, and finally, it is
usel ess when the noise changes from utterance to utterance.
Therefore, in most applications, such adaptation is not de-
sirable.

Some feature space (front-end) techniques developed in
the past provide simple solutions. CMN (cepstral mean nor-
malization) [4] removes utterance mean which is related to
channel distortion. SS (spectral subtraction) [5] reduces
background noise. Methods such as the ETSI advanced
DSR front-end [ 6] handlesboth channel distortion and back-
ground noise. These techniques do not require any noisy
training data. However, to be effective in noise reduction,
they typically requirean accurate point estimate of the noise
spectrum.

In the model space, a convolutive (e.g. channel) com-
ponent and an additive (e.g. noise) component can be in-
troduced to model the two distortion sources [7, 8, 9, 10,
11, 12]. The effect of the two distortion sources introduces
in the log spectral domain non-linear parameter changes,
which can be approximated by linear equations [13, 14].

We describe a new framework that handles simultane-
ously both noise and channel distortions for speaker-inde-
pendent speech recognition robust to awide variety of noises
and channel distortions.

2. COMPENSATION MODEL

We first establish the relationship between distorted speech
and distortion factors.

A speech signal z(n) can only be observed in a given
acoustic environment. An acoustic environment can be mod-
eled by a background noise b'(n) and a distortion channel
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h(n). For typica mobile speech recognition, b'(n) con-
sists of noise from office, vehicle engine and road noises,
and h(n) consists of microphone type and relative posi-
tion to the spesker. Let y(n) be the speech observed in
the environment involving b’(n) and h(n): y(n) =
(z(n)+b'(n))*h(n). Intypica speech recognition applica-
tions, b'(n) cannot be measured directly. What is available
isb'(n) * h(n). Let b(n) = b'(n) * h(n), our model of
distorted speech becomes:

y(n) = z(n) * h(n) + b(n) @
Or, applying the DFT to both sides of Eg-1:
Y (k) = X(k)H(k) + B(k) )

In speech recognition systems, typically the parameters are
represented in a logarithmic scale. Expressing the above
quantitiesin logarithmic scale, we have:

Y!' £ g(x!,H', B ©)
where
(X!, H', BY) (k) = log(exp(X! (k) + H'(k)) + exp(B! (k))).

In this paper, we are interested in the distribution of Y,
given that X! is generated by an HMM process and that H'
and B! are two unknown constants.

Assuming the log-normal distribution [15] and ignoring
the variance, we have

E{Y'} £ i’ = g(m, H', B)) )

where m! is the original Gaussian mean vector, and ' is
the Gaussian mean vector compensated for the distortions
caused by channel and environment noise. Eg-4 says that
the mean vector of acompensated model can be determined
if m! and an estimate of channel and noiseis available.

In the next sections, the solution of the channel estimate
isoutlined. Detailed description can be found in [16].

2.1. Estimation of noise component

From Eg-1, with z(n) = 0, we have: y(n) = b(n) which
means that the filtered noise b(n) can be observed during a
speech pause. Given that y(n) of the window ¢ is typically
represented in MFCC domain as y;, we can calculate an
estimate of noise in the log domain B! as the average of P
noise frames in the log domain:

P
B = 3 DFT(y) 5)
t=0

2.2. Estimation of channel component
2.2.1. Channel Equation

Our goal is to derive the HMMs of Y under both additive
noise and convolutive distortions. The key problem is to
obtain an estimate of the channel H!. We assume that some
speech data recorded in the noisy environment is available,
and that the starting HMM models for X are trained on
clean speech in the MFCC feature space.

The speech model is continuous density Gaussian mix-
ture HMMs. In the following, only the mean vectors of the
original model space will be modified.

Let R be the number of utterances available for training
ahidden Markov model. Let T, be the number of framesin
utterancer. Let Q, bethe set of statesof an HMM. Let Q2,,
be the set of mixing components of a state. Let 67 and £
be the random variables denoting the index of the state and
mixing component, respectively, at time ¢ of the utterance
r. According to EM algorithm [17], the auxiliary function
of interest can be written as:

R T,

AN =D3"3" N p(6; =4, & = kO, X)

r=11t=1;€Qs k€EQm
where

. A N
p(0]60] = j,& =k, ) = bjr(o]) ~ N(of; 1, V1)

in which N(z; i, o) is a Gaussian distribution with mean
vector y and covariance matrix o, and

p(6; = j,& = k|0, %) = 7] (j k) )
o] isthe observed speech frame of the utterancer at time .
m; ; isthe mean vector of mixing component & of the state
J which, according to Eg-4, isafunction of H.

To maximize Q;(A|\), differentiating Eq-6 with respect
to m; 5, and equating to zero, we obtain an equation for each
state j and mixing component k. Summing up al these
equations, we have

R T"

N S S G kv e -0} =0 (8)

JEQs kEQ,, r=1t=1

In Eg-8, each m; ;. is afunction of the channel estimate
H. Directly solving this equation for H involves multi-
dimensional non-linear equations and computational heavy
transformations between cepstrum and | og-spectrum domains.
A simplified solution is developed here. Applying DFT, ig-
noring the variance for simplicity, and using Eq-4, we ob-
tain:

R T"

u(EH,B) = > Y Y >4k ©)

JEQs kEQ,, r=1t=1
: {g(mé,ka HlvBl) - D]:T(OI)} =0
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Eg-9iscalled channel equation.

2.2.2. Solving channel equation

Several algorithms can be used to find a solution H for
u(H, B) = 0. We use Newton’s method, as it has the prop-
erty of convergence at square rate. Such speed should be in
general faster than gradient method. Aswe are interested in
on-line estimation of the parameters, the convergence speed
iscritical. The method is iterative, which gives a new esti-

mate HY, ,,, atiteration + 1, of H' using:
u(H,, B)
I [
i) = Hy ~ @, ) (10

UK

where u’ (H', B) isthe derivative of u(H', B) with respect
to channel H'. Asinitial condition for Eq-10, we can set

Hi, =0 (11)

2.2.3. Compensation for time derivatives

The distortion caused by channel and noise also changesthe
distribution of dynamic (e.g. time derivative of) MFCC co-
efficients, in addition to that of static coefficients described
so far. Under the present framework, the time derivatives of
MFCC can be also compensated.

According to definition, the compensated time derivar
tive of cepstral coefficients Y isthetime derivative of com-
pensated cepstral coefficients Y ©. It can be shown [16] that
both first and second order time derivatives are respectively
afunction of

_ exp(X' (k)
(k) = exp(H' (k) s (12
, o exp(XU(k)) _—
We recognize that, by definition, m isthesigna

to-noiseratioin linear scale at the the frequency bin k. Con-
sequently, n(k) is called the generalized SNR in linear scale
at the frequency bin k. Due to space limitation, in this pa-
per the solution for the time derivatives wil not be further
elaborated.

3. EXPERIMENTAL RESULTS

3.1. Database and speech models

Thedatabaseisrecordedin-vehicle, usingan AKG M2 hands-
free distant talking microphone, in four recording sessions:
parked-trn (car parked, engine off), parked (car parked, en-
gine off), city (car driven on a stop and go basis), and high-
way (car driven on highway).

In each session, 20 speakers (10 male) read 40 sentences
each, giving 800 utterances. Each sentence is either a 10, 7

or 4 digit sequence, with equal probabilities. There are over
16,000 digit tokensin thistest set. The database is sampled
at 8kHz, with framerate of 20ms. From the speech, MFCC
of order 10 is derived.

HMMs used in al experiments are trained on TIDIG-
ITS clean speech data. Evaluated on TIGIDIT test set, the
recognizer gives 0.36% word error rate.

For the testing hands-free database, the microphone is
remote mounted and band-limited, as compared to a high
quality microphone used to collect TIDIGITS. Also, there
is a substantial amount of background noise due to car en-
vironment, with SNR reaching 0dB for the highway driving
condition. Compared to the speech database used to train
the above HMM models, the database presents severe mis-
match to the models trained on TIDIGITS, both in channel
and in noise background. It is therefore very challenging to
see the performance of different compensation approaches
on this database.

In the experiments, the bias is reestimated after recog-
nizing each test utterance. At the beginning of the recog-
nition of all speakers, the bias is set to zero. This scheme
makes it possible for the parameter estimation procedureto
exploit theinformation about the channel acquired from rec-
ognizing all previous speakers in order to better determine
the channel for the current speaker.

3.2. Recognition results

The new algorithm is referred to as JAC (joint compensa-
tion of additive noise and convolutive distortion). Table-
1 summarizes the recognition performance for BASELINE
(no compensation applied), CMN (cepstral mean normal-
ization), PMC (parallel model combination where the noise
is represented by a single state HMM), and JAC (on static
MFCC coefficientsonly). Table-1 showsthat: /1/ Compared

| [ PARKED | CITY | HIGHWAY |

BASELINE | 138 | 303 732
CMN 059 | 188 51.7
PMC 174 | 629 17.0
[AC [ 047 [ 18 | 778 |

Table 1. word error rate (%) as function of driving condi-
tions and compensation methods

to noise-free recognition WER (0.36%), without any com-
pensation (BASEL INE) the recognition performance degra-
des severely. /2/ CMN effectively reduces the WER for
parked data, but is not effectivefor driving conditionswhere
additive noise becomes dominant. /3/ PMC substantially re-
ducesthe WER for driving conditions, but gives poor results
for parked data where microphone mismatch is dominant.
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/4] JAC gives substantially lower WER than non-JAC meth-
ods.

4. CONCLUSION

The distribution of speech signals observed in a mobile en-
vironment is distorted by channel and background noises,
compared to the speech acoustic models trained in a clean
environment. Handling simultaneously the two sources of
distortion is critical to maintaining the recognition perfor-
mancein typical situationswherethe recognizer is deployed.

Automatically adjusting speech model parameters ac-
cording to these distortionsis one way of modeling the two
sources. A recoghition method is developed which iden-
tifies two log-domain components from incoming speech
signal: one for the channel or microphone distortion (con-
volutive), and the other for the background noise (additive).
An EM agorithm based procedure is derived to estimate
the convolutive component iteratively. The method com-
pensates for the utterance-specific distortions by modifying
mean vectors of the HMMs of the recognizer for every in-
coming utterance.

Experimental results show that, although very simple,
the method isextremely efficient inimproving speaker-inde-
pendent recognition performance in a real application task.
The method substantially reduced the word error rates ob-
tained using either CMN or PMC, and achieved an overall
86% average word error rate reduction compared to base-
line performance. The method makes it possible to obtain
high performance for speaker-independent recognition in
changing noisy environments without explicitly collecting
any noisy speech for training.
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