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ABSTRACT

We study the effect of different feature space normalization tech-
niques in adverse acoustic conditions. Recognition tests are re-
ported for cepstral mean and variance normalization, histogram
normalization, feature space rotation, and vocal tract length nor-
malization on a German isolated word recognition task with large
acoustic mismatch. The training data was recorded in clean office
environment and the test data in cars. Speech recognition failed
completely without normalization on the highway dataset, whereas
the word error rate could be reduced to 17% using an online setup
and to 10% with an offline setup.

1. INTRODUCTION

Mismatch between training and test data is a major error source
for automatic speech recognition systems. Variable environments
(ambient noise, recording equipment, and transmission channels)
result in a severe degradation of recognition performance [11].
Inter-speaker variations like different vocal tract lengths induce
further variability to the speech signal that make the recognition
task even more difficult.

In the literature a number of techniques were presented to cope
with mismatch conditions. They fall into two broad categories:
normalization schemes try to reduce the mismatch by transforming
the acoustic vectors,adaption techniques amount to a transforma-
tion of the acoustic model to adapt it to the specific test conditions.

From a statistical point of view, reducing the mismatch be-
tween training and test conditions means to match the distributions
of the signals’ values. In the following we will study different nor-
malization schemes with growing complexity, and sequential ap-
plications of these. Starting from simple mean and variance nor-
malization, more elaborate histogram-based techniques will be de-
scribed. A version suited for online applications will be compared
to more complex techniques including feature space rotations. Fi-
nally vocal tract length normalization (VTN) will be applied to
reduce remaining speaker dependent variations.

2. TRAINING AND TEST CONDITIONS

The normalization techniques will be studied on the CarNavigation
corpus, a German isolated word database with a 2k-word closed
vocabulary and strong mismatch conditions. Training data were
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Table 1. Statistics of the CarNavigation corpus
CarNavigation Training Test

Office Office City Highway

Duration [h] 18.8 1.7 1.7 1.8
Sil. Fraction [%] 60 69 73 75
Turn Duration [s] 785 425 450 468
# Speakers 86 14 14 14
# Run. Words 61,742 2,069 2,100 2,100
Zerogram PP. - 2,100 2,100 2,100

recorded with a sampling rate of 16 kHz in a quiet office environ-
ment. The office test set was recorded under the same conditions
(SNR 21 dB). Two further test sets were recorded in cars (city and
highway traffic, average SNRs 9 dB and 6 dB, respectively). There
was no overlap in vocabulary between the different test sets, and
between the training and test sets. Statistics of the training and test
corpora are summarized in Table 1. Turn duration gives the aver-
age amount of acoustic data used to estimate the histograms and/or
rotation matrix in offline mode.

Recognition tests will be carried out with the RWTH large vo-
cabulary speech recognition system which was described in detail
in [8] and [10]. The recognizer contains a standard MFCC front-
end with subsequent linear discriminant analysis. Words were
modeled with triphones using 700 decision tree based tied states
plus one silence state. The acoustic models consist of approxi-
mately 20k Gaussian densities with globally pooled diagonal co-
variance matrices.

3. CEPSTRAL MEAN AND VARIANCE
NORMALIZATION

The speech signal produced by a speaker is transmitted over some
channel before it reaches the recording device. The channel dis-
turbs the original speech signal. Convolutional distortions are mul-
tiplicative in the spectrum domain. Due to the logarithmic com-
pression of the filterbank channels before the cosine transforma-
tion, multiplicative distortions become additive in the cepstrum
domain [12].

Thus, a simple and effective way of channel normalization is
to subtract the mean of each cepstrum coefficient (cepstral mean
normalization, CMN) which will remove time-invariant distortions
introduced by the transmission channel and the recording device.
Furthermore it is known that normalizing the variance of cepstral
coefficients (CVN) helps to improve recognition in adverse condi-
tions.

Recognition test results for these techniques are summarized
in Table 2. The baseline word error rate (#0) for clean test data
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is 2.8%. Under mismatch conditions it increases dramatically.
Whereas in the city traffic test set at least a third of the words
are still recognized correctly, essentially nothing is correctly rec-
ognized in the highway test set.

Cepstral mean normalization (Table 2, #1) has no impact on
the office test set, since there is no channel mismatch. It more
than halves the word error rate (WER) on the city data, but it is
not sufficient for the highway data. Only when the variance is
normalized as well (#2), the word error rate drops in all conditions
below 50%.

Interestingly, cepstral variance normalization significantly
lowers the recognition accuracy in the clean office condition. Fur-
thermore, histogram normalization as described in the following
sections gives consistently better results without subsequent CVN
[7]. The variance is normalized implicitly when the feature space
dimensions are mapped onto the same target histogram, which is
why a further transformation to unity variance may be counterpro-
ductive. For these reasons, cepstral variance normalization has not
been further pursued in subsequent tests.

4. QUANTILE EQUALIZATION

The aim of histogram normalization [1] [9] is to match the overall
distribution of each feature space dimension in training and test,
not just the mean and variance. It is based on the assumption that
in the absence of mismatch at a certain stage of the feature extrac-
tion the global statistics of the speech signal are the same indepen-
dently of what was actually spoken. As with cepstral mean and
variance normalization, the feature space dimension are normal-
ized independently of each other. Hence, only variations that are
decorrelated at the normalization stage can be treated properly.

When sufficient amounts (minutes) of adaptation data are
available, a non-parametric histogram based approach can be used
to estimate the distribution of the training and test data and define
an appropriate transformation. This approach will be evaluated
in section 5. For real time applications that require short delays
in signal analysis, a parametric transformation function should be
used which allows for robust parameter estimation on a short data
window.

Quantile equalization as introduced in [3] and [4] is a para-
metric type of histogram normalization. It relies on estimating the
signals’ cumulative density functions (CDFs) based on quantiles
(typically four) instead of the full histograms. A transformation
function is calculated that minimizes the mismatch between the
quantiles of the current test utterance and those estimated on the
training data (Figure 1). Depending on where in the feature ex-
traction the transformation shall take place, different transforma-
tion functions may be appropriate. On the CarNavigation corpus,
a power function applied to the Mel-scaled filterbank channels of
reduced dynamic range gave good results [4]. To ensure that the
coefficients are positive, the 10th root was used for dynamic range
reduction instead of the logarithm. It turned out, that replacing the
logarithm by the 10th root alone reduces the error rate similar to
cepstral variance normalization (Table 2, #3).

As it was shown in [4], quantile equalization requires as little
as one second of data to estimate the transformation function reli-
ably. Furthermore it is possible to combine quantile equalization
with mean normalization in a way that does not induce additional
delay. Table 2 gives recognition results for joint quantile and mean
normalization (#4). The total delay is 500ms with a window length
of 1s to estimate the quantiles and the mean.
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Fig. 1. Applying a parametrized transformation to make the four
test quantiles match the training quantiles (CDF: cumulative den-
sity function).

So far, quantile equalization had been applied to the test data
only. Better results can be obtained when the training data are nor-
malized, too. First the target quantiles are estimated on all training
data. Then quantile equalization is applied to match the distri-
bution of each training utterance to the target distribution, before
acoustic models are trained on the normalized data. Even though
the training data of the CarNavigation corpus were recorded in a
clean office environment, a significant reduction in word error rate
under mismatch conditions of up to 17% relative was obtained by
training data normalization (Table 2, #5).

5. HISTOGRAM NORMALIZATION

In offline applications all utterances of each speaker (on average
about 7 min of data on the CarNavigation corpus) can be used
to estimate detailed histograms. In previous work [6] we found
that histogram normalization performs best at the log-filterbank
level. As in the case of quantile equalization both training and
test data are normalized with the overall distribution of all training
data used as reference (target) histogram. Since the transformation
is not restricted to positive values and since it is non-parametric, it
can mimic any monotone function for reducing the dynamic range
of the filterbank channels. Hence, root compression is not manda-
tory anymore. The choice of the compression function is only of
interest at startup when the target histogram is estimated, since this
histogram determines the distribution of training and test data after
normalization.

Recognition test summarized in Table 2 show that estimating
the full histogram (#6) alone does not yield better results in mis-
match conditions than quantile equalization (#5). However, the
offline approach does allow for some further refinements leading
to significant improvements in recognition performance.

The assumption on the global statistics of the speech signal is
sometimes violated. Even if enough speech data are available to
ensure approximately equal phoneme frequency for each speaker,
and even if the phoneme-dependent distributions are identical for
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Fig. 2. Histogram over the silence fractions of individual speakers
in the CarNavigation training corpus. The vertical line marks the
average silence fraction of 60%.

all speakers in the absence of mismatch, the histograms may still
vary due to different silence fractions. This has a severe impact on
speakers with a much lower or higher than average silence fraction.

Figure 2 shows a histogram of the speaker-wise silence frac-
tions on the CarNavigation training corpus. The average silence
fraction on this corpus is 60%, but the number varies between 45%
and 75% for individual speakers.

The solution is to estimate two independent target histograms
for silence and speech [7]. A forced alignment with the reference
transcriptions is carried out on the training data, and all acoustic
vectors mapped to the silence mixture are assigned to the silence
histogram, all other vectors to the speech histogram.

In the normalization step, the silence fraction of the actual
training or test speaker has to be determined first. For the training
speakers, it is obtained by a forced alignment as before. Since the
correct transcription is unknown, the silence fraction of test speak-
ers is determined either in a preliminary recognition pass (two-pass
recognition) or using a speech/silence detector.

Next an adapted target histogram is computed for each speaker
by linear interpolation between the cumulative speech and silence
histograms. The adapted target histogram is used for normaliza-
tion as before. Recognition tests (Table 2) show that explicit si-
lence fraction treatment (#7) reduces the word error rate by another
7% to 20% relative to baseline histogram normalization (#6).

6. FEATURE SPACE ROTATIONS

The second basic assumption of histogram normalization is a fea-
ture space in which the considered variations are approximately
decorrelated. Previous tests have suggested that this condition is
best met at the filterbank level, i.e. that the variations are approxi-
mately decorrelated in the frequency domain [6]. Still the feature
space as such might be rotated by a small amount, which could
not be treated properly by histogram normalization. To overcome
this limitation, the feature space may be rotated in addition to his-
togram normalization [7].

At first, a covariance matrix is computed over all training vec-
tors. A set of target eigenvectors is calculated and sorted in de-
scending order of their corresponding eigenvalues. It turns out that
the first eigenvalue is significantly larger than all others. Hence,
the feature space has one preferred direction with large scatter, and
along the other principal axes data scatter is much smaller.
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Fig. 3. Histogram over the deviation angles between the first
eigenvectors of the speaker dependent covariance matrices and of
the target covariance matrix obtained from log-filterbank coeffi-
cients on the different CarNavigation test sets.

Next the covariance matrix and eigenvector basis for each
speaker is derived. The first eigenvector, i.e. the direction of the
principal axis with largest data scatter, usually differs from the di-
rection of the first target eigenvector in the 20-dimensional log-
filterbank feature space. On the CarNavigation corpus, the rotation
angles increase with the mismatch. Whereas on the office test data
the average rotation angle is 6 deg, it increases to 23 deg on the
city and 32 deg on the highway data (Figure 3).

To account for this deviation, a speaker-dependent transforma-
tion matrix is calculated that rotates the feature space in the plane
spawned by the first speaker-dependent and the first target eigen-
vector. The matrix is designed such that the speaker’s feature space
remains undistorted, but the principal axis with largest data scatter
becomes identical for all speakers. Details on the transformation
matrix can be found in [7].

In the experiments the rotation matrix was computed and ap-
plied to both test and training data. Results are reported in Table 2
in combination with silence fraction adapted histogram normaliza-
tion and cepstral mean normalization (#8). If applied in the right
order, feature space rotation and histogram normalization together
perform better than rotation and histogram normalization alone.
We find that in general one should apply the normalization method
first that gives most gain in recognition performance alone, i.e. his-
togram normalization first. We observed significantly reduced ro-
tation angles after histogram normalization which might therefore
be estimated more reliably.

7. VOCAL TRACT LENGTH NORMALIZATION

The shape and size of the human vocal tract differs from speaker
to speaker, with female speakers having on average shorter vocal
tracts than male. These differences result in a shift of formant fre-
quencies which is approximately inverse proportional to the length
of the vocal tract [2]. The idea of VTN is to warp the frequency
axis during signal analysis and shift the formants to their “canoni-
cal” position.

Vocal tract length normalization has been studied by numer-
ous groups (e. g. [2],[5]), the RWTH setup was described in [10].
Here we applied piecewise-linear frequency warping in training
and test. Warping factors for training speakers were estimated in
a maximum likelihood framework using a low-resolution (single
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Table 2. Recognition test results for the CarNavigation corpus
with different normalization techniques: Cepstral mean normal-
ization (CMN), cepstral variance normalization (CVN), filter bank
mean normalization (FMN), quantile equalization (QE) in train-
ing and test (QETT), histogram normalization (HN) with silence
fraction treatment (HNSIL), feature space rotation (ROT), and vo-
cal tract length normalization (VTN). Logarithm (log) and 10th
root (root) were used to reduce the dynamic range of the filterbank
channels.

# Normalization WER [%]
Office City High.

0 log, no normalization 2.8 68.0 99.0
1 log, CMN 2.9 31.6 74.2
2 log, CMN, CVN 4.2 20.8 39.7
3 root, FMN 2.8 19.9 40.1
4 root, FMN, QE 3.2 11.7 20.1
5 root, FMN, QETT 3.3 10.1 16.7
6 log, CMN, HN 2.8 10.2 16.6
7 log, CMN, HNSIL 2.6 8.2 14.3
8 log, CMN, HNSIL, ROT 2.4 7.1 11.1
9 log, CMN, HNSIL, ROT, VTN 2.2 6.6 10.4

densitiy) acoustic model. For test, speaker-wise warping factors
were obtained in a two-pass scheme. An acoustic model trained
with all normalizations excluding VTN (Table 2, #8) was used in
a first recognition pass to obtain a preliminary transcription of the
utterances. The transcription was then used in connection with a
fully normalized acoustic model to find the warping factor with
maximum likelihood.

VTN typically yields a reduction of word error rate in the or-
der of 10% relative. Larger reductions were reported for “simple”
tasks or acoustic models, whereas the WER reduction fell typi-
cally well below 10% relative for large vocabulary systems with
advanced acoustic modeling trained on a large amount of data. On
the CarNavigation corpus we achieved between 6% and 8% rela-
tive reduction of WER (Table 2, #9) compared to the best offline
system including cepstral mean subtraction, histogram normaliza-
tion with silence fraction treatment, and feature space rotation.

8. SUMMARY

In this paper various normalization techniques applied during fea-
ture extraction where compared. Although the approaches have
different levels of complexity the common idea behind all of them
is the reduction of an eventual mismatch between the data distri-
bution of the current test utterances and the data the system was
trained on. A database recorded in cars was used to investigate how
the techniques perform under adverse acoustic conditions. Recog-
nition test results are summarized in Table 2.

The word error rates of the baseline system with cepstral mean
normalization were 2.8% (office), 31.6% (city), and 74.2% (high-
way). The best online approach using quantiles to estimate the cu-
mulative density functions of the signal yielded 3.3%, 10.1%, and
16.7%. An offline setup with non-parametric histogram normal-
ization including silence fraction treatment, feature space rotation,
and vocal tract length normalization lead to the best result of 2.2%,
6.6%, and 10.4%.

We have shown that normalization techniques are vital for con-
ditions with major mismatch between training and test conditions.
Whereas essentially no word was correctly recognized on the high-

way data without normalization, the word error rate could be re-
duced to a reasonable level of 17% for an online and 10% for an
offline recognition setup.
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