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ABSTRACT Table 1. Statistics of the CarNavigation corpus
We study the effect of different feature space normalization tech- | CarNavigation Training Test
nigues in adverse acoustic conditions. Recognition tests are re- Office | Office | City | Highway
ported for cepstral mean and variance normalization, histogram ["Duration [h] 18.8 1.7 1.7 1.8
normalization, feature space rotation, and vocal tract length nor- | Sjl. Fraction [%] 60 69 73 75
malization on a German isolated word recognition task with large | Turn Duration [s] 785 425 450 468
acoustic mismatch. The training data was recorded in clean office ["# Speakers 36 14 14 14
environment and the test data in cars. Speech recognition failed| # Run. Words 61,742 | 2,069 | 2,100| 2,100
completely without normalization on the highway dataset, whereas [~Zerogram PP. - 2,100 | 2,100 2,100
the word error rate could be reduced to 17% using an online setup
and to 10% with an offline setup. recorded with a sampling rate of 16 kHz in a quiet office environ-

ment. The office test set was recorded under the same conditions
(SNR 21 dB). Two further test sets were recorded in cars (city and
1. INTRODUCTION highway traffic, average SNRs 9 dB and 6 dB, respectively). There
) o ) ] was no overlap in vocabulary between the different test sets, and
Mismatch between training and test data is a major error sourcepetween the training and test sets. Statistics of the training and test
for automatic speech recognition systems. Variable environmentscorpora are summarized in Table 1. Turn duration gives the aver-
(ambient noise, recording equipment, and transmission channelsyge amount of acoustic data used to estimate the histograms and/or
result in a severe degradation of recognition performance [11]. yotation matrix in offline mode.
Inter-speaker variations like different vocal tract lengths induce Recognition tests will be carried out with the RWTH large vo-
further variability .tq the speech signal that make the recognition cabulary speech recognition system which was described in detalil
task even more difficult. in [8] and [10]. The recognizer contains a standard MFCC front-
_Inthe literature a number of techniques were presented to copeang with subsequent linear discriminant analysis. Words were
with mismatch conditions. They fall into two broad categories: modeled with triphones using 700 decision tree based tied states
normalization schemes try to reduce the mismatch by transforming pys one silence state. The acoustic models consist of approxi-
the acoustic vectorsdaption techniques amount to a transforma-  mately 20k Gaussian densities with globally pooled diagonal co-
tion of the acoustic model to adapt it to the specific test conditions. y;ariance matrices.
From a statistical point of view, reducing the mismatch be-
tween training and test conditions means to match the distributions
of the signals’ values. In the following we will study different nor- 3. CEPSTRAL MEAN AND VARIANCE
malization schemes with growing complexity, and sequential ap- NORMALIZATION
plications of these. Starting from simple mean and variance nor-
malization, more elaborate histogram-based techniques will be de-The speech signal produced by a speaker is transmitted over some
scribed. A version suited for online applications will be compared channel before it reaches the recording device. The channel dis-
to more complex techniques including feature space rotations. Fi-turbs the original speech signal. Convolutional distortions are mul-
nally vocal tract length normalization (VTN) will be applied to tiplicative in the spectrum domain. Due to the logarithmic com-
reduce remaining speaker dependent variations. pression of the filterbank channels before the cosine transforma-
tion, multiplicative distortions become additive in the cepstrum
domain [12].
Thus, a simple and effective way of channel normalization is
to subtract the mean of each cepstrum coefficient (cepstral mean
ormalization, CMN) which will remove time-invariant distortions
ntroduced by the transmission channel and the recording device.
€ Furthermore it is known that normalizing the variance of cepstral
This work was partially funded by the European Commission under c_oefﬂments (CVN) helps to improve recognition in adverse condi-
the Human Language Technologies project CORETEX (IST-1999-11876), tions. . ) )
and by the DFG (Deutsche Forschungsgemeinschaft) under contract NE ~ Recognition test results for these techniques are summarized
572/4-1. in Table 2. The baseline word error rate (#0) for clean test data

2. TRAINING AND TEST CONDITIONS

The normalization techniques will be studied on the CarNavigation
corpus, a German isolated word database with a 2k-word close
vocabulary and strong mismatch conditions. Training data wer
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is 2.8%. .Under mismatph conditions it increa;es dramatically. CDF trai ni ng X A transformation
Whereas in the city traffic test set at least a third of the words - - - - -~ _ _ | - _ _ _
are still recognized correctly, essentially nothing is correctly rec-
ognized in the highway test set.

Cepstral mean normalization (Table 2, #1) has no impact on !
the office test set, since there is no channel mismatch. It more :
than halves the word error rate (WER) on the city data, but it is |
not sufficient for the highway data. Only when the variance is |
normalized as well (#2), the word error rate drops in all conditions I

I
<!

I
I I - -
below 50%. I I I
Interestingly, cepstral variance normalization significantly L L L »
lowers the recognition accuracy in the clean office condition. Fur- 100% 75% 50% 25% Y
thermore, histogram normalization as described in the following 25

sections gives consistently better results without subsequent CVN
[7]. The variance is normalized implicitly when the feature space
dimensions are mapped onto the same target histogram, which is
why a further transformation to unity variance may be counterpro-
ductive. For these reasons, cepstral variance normalization has not
been further pursued in subsequent tests.

50%

759

100%
\

4. QUANTILE EQUALIZATION

) . o . Fig. 1. Applying a parametrized transformation to make the four
The aim of histogram normalization [1] [9] is to match the overall yoqt quantiles match the training quantiles (CDF: cumulative den-
distribution of each feature space dimension in training and tESt'sity function).
not just the mean and variance. It is based on the assumption that . . .
in the absence of mismatch at a certain stage of the feature extrac- | So far, quantllle equgllzaélon hgd %een prp“(.ed. to fjhe test data
tion the global statistics of the speech signal are the same indepen‘-)n Y. Better resu ts can be o talne. when't e.tralnlng ata are nor-
dently of what was actually spoken. As with cepstral mean and malized, too. First Fhe targe; qu_antll_es are _estlmated onall tra!nln_g
variance normalization, the feature space dimension are normal-dat.a' Then quanplg equalization is applied to.mgtchl the distri-
ized independently of each other. Hence, only variations that aregggﬂgtg;?)ggltsrz?éngaﬁﬁt;;a;:?hf rt]g?nizrlieet dd('f;fug?,g},btﬁgeh
decorrelated at the normalization stage can be treated properly. the training data of the CarNavigati : ded i 9
When sufficient amounts (minutes) of adaptation data are € training dala ot the Laravigation corpus were recorded in a

available, a non-parametric histogram based approach can be use%]ean office environment, a significant reduction in word error rate

b " 0 . )
to estimate the distribution of the training and test data and definetjrgqnef:] m(I:isaTaa;(i)hrr(r::;?dgltgonns (?r;ltj)?etg 1#75/° relative was obtained by
an appropriate transformation. This approach will be evaluated ining Izatl  #5).

in section 5. For real time applications that require short delays

in signal analysis, a parametric transformation function should be 5. HISTOGRAM NORMALIZATION
used which allows for robust parameter estimation on a short data
window. In offline applications all utterances of each speaker (on average

Quantile equalization as introduced in [3] and [4] is a para- about 7 min of data on the CarNavigation corpus) can be used
metric type of histogram normalization. It relies on estimating the to estimate detailed histograms. In previous work [6] we found
signals’ cumulative density functions (CDFs) based on quantiles that histogram normalization performs best at the log-filterbank
(typically four) instead of the full histograms. A transformation level. As in the case of quantile equalization both training and
function is calculated that minimizes the mismatch between the test data are normalized with the overall distribution of all training
guantiles of the current test utterance and those estimated on thélata used as reference (target) histogram. Since the transformation
training data (Figure 1). Depending on where in the feature ex- is not restricted to positive values and since it is non-parametric, it
traction the transformation shall take place, different transforma- can mimic any monotone function for reducing the dynamic range
tion functions may be appropriate. On the CarNavigation corpus, of the filterbank channels. Hence, root compression is not manda-
a power function applied to the Mel-scaled filterbank channels of tory anymore. The choice of the compression function is only of
reduced dynamic range gave good results [4]. To ensure that thénterest at startup when the target histogram is estimated, since this
coefficients are positive, the 10th root was used for dynamic rangehistogram determines the distribution of training and test data after
reduction instead of the logarithm. It turned out, that replacing the normalization.
logarithm by the 10th root alone reduces the error rate similar to Recognition test summarized in Table 2 show that estimating
cepstral variance normalization (Table 2, #3). the full histogram (#6) alone does not yield better results in mis-

As it was shown in [4], quantile equalization requires as little match conditions than quantile equalization (#5). However, the
as one second of data to estimate the transformation function reli-offline approach does allow for some further refinements leading
ably. Furthermore it is possible to combine quantile equalization to significant improvements in recognition performance.
with mean normalization in a way that does not induce additional The assumption on the global statistics of the speech signal is
delay. Table 2 gives recognition results for joint quantile and mean sometimes violated. Even if enough speech data are available to
normalization (#4). The total delay is 500ms with a window length ensure approximately equal phoneme frequency for each speaker,
of 1s to estimate the quantiles and the mean. and even if the phoneme-dependent distributions are identical for
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Fig. 2. Histogram over the silence fractions of individual speakers Fig. 3. Histogram over the deviation angles between the first
in the CarNavigation training corpus. The vertical line marks the eigenvectors of the speaker dependent covariance matrices and of
average silence fraction of 60%. the target covariance matrix obtained from log-filterbank coeffi-

all speakers in the absence of mismatch, the histograms may stilF'€nts on the different CarNavigation test sets.
vary due to different silence fractions. This has a severe impacton  Next the covariance matrix and eigenvector basis for each
speakers with a much lower or higher than average silence fractionspeaker is derived. The first eigenvector, i.e. the direction of the
Figure 2 shows a histogram of the speaker-wise silence frac-principal axis with largest data scatter, usually differs from the di-
tions on the CarNavigation training corpus. The average silencerection of the first target eigenvector in the 20-dimensional log-
fraction on this corpus is 60%, but the number varies between 45%filterbank feature space. On the CarNavigation corpus, the rotation
and 75% for individual speakers. angles increase with the mismatch. Whereas on the office test data
The solution is to estimate two independent target histogramsthe average rotation angle is 6 deg, it increases to 23 deg on the
for silence and speech [7]. A forced alignment with the reference City and 32 deg on the highway data (Figure 3).
transcriptions is carried out on the training data, and all acoustic ~ To account for this deviation, a speaker-dependent transforma-
vectors mapped to the silence mixture are assigned to the silencéion matrix is calculated that rotates the feature space in the plane
histogram, all other vectors to the speech histogram. spawned by the first speaker-dependent and the first target eigen-
In the normalization step, the silence fraction of the actual vector. The matrix is designed such that the speaker’s feature space
training or test speaker has to be determined first. For the trainingremains undistorted, but the principal axis with largest data scatter
speakers, it is obtained by a forced alignment as before. Since thdecomes identical for all speakers. Details on the transformation
correct transcription is unknown, the silence fraction of test speak- matrix can be found in [7].
ersis determined either in a preliminary recognition pass (two-pass  In the experiments the rotation matrix was computed and ap-
recognition) or using a speech/silence detector. plied to both test and training data. Results are reported in Table 2
Next an adapted target histogram is computed for each speakein combination with silence fraction adapted histogram normaliza-
by linear interpolation between the cumulative speech and silencetion and cepstral mean normalization (#8). If applied in the right
histograms. The adapted target histogram is used for normaliza-order, feature space rotation and histogram normalization together
tion as before. Recognition tests (Table 2) show that explicit si- perform better than rotation and histogram normalization alone.
lence fraction treatment (#7) reduces the word error rate by anotheWe find that in general one should apply the normalization method
7% to 20% relative to baseline histogram normalization (#6). first that gives most gain in recognition performance alone, i.e. his-
togram normalization first. We observed significantly reduced ro-

tation angles after histogram normalization which might therefore
6. FEATURE SPACE ROTATIONS be estimated more reliably.

The second basic assumption of histogram normalization is a fea-
ture space in which the considered variations are approximately 7. VOCAL TRACT LENGTH NORMALIZATION
decorrelated. Previous tests have suggested that this condition is
best met at the filterbank level, i.e. that the variations are approxi- The shape and size of the human vocal tract differs from speaker
mately decorrelated in the frequency domain [6]. Still the feature to speaker, with female speakers having on average shorter vocal
space as such might be rotated by a small amount, which couldtracts than male. These differences result in a shift of formant fre-
not be treated properly by histogram normalization. To overcome quencies which is approximately inverse proportional to the length
this limitation, the feature space may be rotated in addition to his- of the vocal tract [2]. The idea of VTN is to warp the frequency
togram normalization [7]. axis during signal analysis and shift the formants to their “canoni-
At first, a covariance matrix is computed over all training vec- cal” position.
tors. A set of target eigenvectors is calculated and sorted in de-  Vocal tract length normalization has been studied by numer-
scending order of their corresponding eigenvalues. It turns out thatous groups (e. g. [2],[5]), the RWTH setup was described in [10].
the first eigenvalue is significantly larger than all others. Hence, Here we applied piecewise-linear frequency warping in training
the feature space has one preferred direction with large scatter, andnd test. Warping factors for training speakers were estimated in
along the other principal axes data scatter is much smaller. a maximum likelihood framework using a low-resolution (single
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Table 2. Recognition test results for the CarNavigation corpus
with different normalization techniques: Cepstral mean normal-
ization (CMN), cepstral variance normalization (CVN), filter bank
mean normalization (FMN), quantile equalization (QE) in train-
ing and test (QETT), histogram normalization (HN) with silence
fraction treatment (HNSIL), feature space rotation (ROT), and vo-
cal tract length normalization (VTN). Logarithm (log) and 10th
root (root) were used to reduce the dynamic range of the filterbank
channels.

# | Normalization WER [%)]
Office| City | High.
0 | log, no normalization 2.8 | 68.0] 99.0
1 | log, CMN 29 | 316| 74.2
2 | log, CMN, CVN 42 | 20.8| 39.7
3 | root, FMN 28 | 19.9] 401
4 | root, FMN, QE 3.2 | 11.7] 20.1
5 | root, FMN, QETT 3.3 | 10.1] 16.7
6 | log, CMN, HN 2.8 | 10.2| 16.6
7 | log, CMN, HNSIL 26 | 82 | 143
8 | log, CMN, HNSIL, ROT 24 | 71 | 111
9 | log, CMN, HNSIL,ROT,VIN || 2.2 | 6.6 | 10.4

densitiy) acoustic model. For test, speaker-wise warping factors

were obtained in a two-pass scheme. An acoustic model trained

with all normalizations excluding VTN (Table 2, #8) was used in
a first recognition pass to obtain a preliminary transcription of the

utterances. The transcription was then used in connection with a

fully normalized acoustic model to find the warping factor with
maximum likelihood.

VTN typically yields a reduction of word error rate in the or-
der of 10% relative. Larger reductions were reported for “simple”
tasks or acoustic models, whereas the WER reduction fell typi-
cally well below 10% relative for large vocabulary systems with

way data without normalization, the word error rate could be re-
duced to a reasonable level of 17% for an online and 10% for an
offline recognition setup.
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