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ABSTRACT

We present a frame-synchronous noise compensation algo-
rithm that uses Stochastic Matching approach to cope with
time-varying unknown noise. This method proposes to esti-
mate simple mapping function in parallel with Viterbi align-
ment. The technique is entirely general since no assump-
tion is made on the nature, level and variation of noise.
Our algorithm is evaluated on the VODIS database recorded
in a moving car. For various tasks, our technique outper-
forms significantly classical methods. For instance, using
the affine transformation the proposed algorithm gives an
error rate improvement of ���� % compared to Parallel
Model Combination (PMC), ���� % on Spectral Subtrac-
tion (SS) and ���� % on frame-synchronous Mean Cepstre
Removal (MCR) for the numbers recognition task in real
noise.

1. INTRODUCTION

An automatic speech recognition (ASR) system gives a sig-
nificant degradation in performances when used in an envi-
ronment that does not match its training environment. This
mismatch is due mostly to additional noise sources and dis-
crepancies in channels and speakers. Those mismatch
sources may be non-stationary and little a priori informa-
tion about them is available.

Several techniques have been proposed to enhance
speech in a robust manner. Two possible approaches can be
explored. First, the parameters of the HMMs can be modi-
fied to make the transformed stochastic models better char-
acterize the distorted features. This approach, called adap-
tation, gathers several techniques such as PMC [1], MAP
[2] and MLLR [3]. Second, the corrupted features can be
adjusted thanks to a transformation that is estimated from
the noise characteristics. This set of methods, called com-
pensation, gathers techniques such as MCR and Stochastic
Matching [4]. The method developed here belongs to this
category.

When acoustic environments are known to be
non-stationary, three types of methods can be used. First,
noise and channel can be modeled by HMMs trained by

prior measurement of the environment [5]. Second, a bank
of Kalman filters can be used to compensate the effect of
time-varying noise [6]. Finally, sequential EM algorithms
track additive noise parameters in cepstral domain [7].

Our work is based on [8] where an approximation of
the mismatch function was performed in order to reduce the
Kullback-Leibler information. Those derivations led to a
recursively updated bias which expression was close to the
one obtained in [4] with a Maximum-Likelihood approach.
Compared to [4], where the batch estimation of mismatch
function is derived, we use a frame per frame approach.
Frame synchronous algorithms are naturally appealing to
cope with non-stationary noise sources even if they often
face convergence problems linked to the scarcity of data.
One of the most popular frame synchronous technique is
MCR: the mean of the incoming sequence of cepstra is com-
puted and subtracted to the next observation.

We believe that this method can be enhanced by tak-
ing into account statistics of the HMMs derived during the
recognition. In the frame synchronous compensation mode,
complete statistics (forward-backward probabilities) are dif-
ficult to obtain because the end of sentence is not available.
One solution is to calculate these statistics on short windows
as in [8]. Another solution, proposed here, is to approximate
these statistics by forward probabilities. The basic idea of
our method is as follows. First, the hypothesis is made that
during the Viterbi alignment, the states linked to the high-
est forward probabilities give a good modelisation of the
speech observations. Then, the parameters of the mismatch
function are estimated in order to enhance the likelihood
of the observation given those states. Consequently, this
on-line algorithm performs compensation in parallel with
recognition and does not need any a priori information on
the nature of the noise. Compensation transform is esti-
mated frame per frame and confidence in its parameters is
gained as forward probabilities computation goes along.

In this paper, we first present the theoretical framework
beneath this method. Then two linear mapping functions are
developed and a discussion on a forgetting process is open.
In section 3, we present experimental results to compare our
algorithm with classical techniques in time varying artificial
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noise and in real-life car noise. Finally, in section 4, we
draw conclusion and describe future work.

2. FRAME-SYNCHRONOUS COMPENSATION

2.1. Description of the algorithm

In the following, the one dimension case is treated, all the
derivation being easily extended to multidimensional case if
diagonal covariance matrices are used. We assume that the
clean signal spectrum �� is distorted by noise and gives ��.
It can be modeled as follows:

�� � �� � �� � �� (1)

where� is the convolution operator,�� is the channel noise,
�� is the additive noise and the � subscript denotes the spec-
tral domain. In the cepstral domain, (1) becomes:

� � �� �	��� ��� ��
 � �� �	�


where �	��� ��� ��
 is a non-linear function without any
regular expression. Usually, the exact values of ��, �� and
�� are unknown. In practice, this function is approximated
by �	�
. The goal of compensation is to find a transforma-
tion 	 such that 		�
 approaches �: 		�
 � �.

Let us consider a Hidden Markov Model recognition
system of 
 � -states models. Each state � is characterized
by mixture of � gaussian probability functions of mean

����� and variance ������ with � � ��� � � � ���. In the
following, the pair 	�� �
 represent the �-th Gaussian com-
ponent of the �-th state.

Let �� � ���� � � � � ��� denotes a partial state sequence
and �� � ���� � � � � �� � be a sequence of noisy observa-
tions in the cepstral domain, corresponding to the sequence
of clean features �� � ���� � � � � �� �.

Consider � as the set of parameters of a transforma-
tion 	�	�
 from the testing observation space to the training
space. It has been shown in [8] that the set � maximizing
the Kullback-Leibler information �	�
 � �����	�	����
�
can be approximated by a sequence �� �� that maximizes the
auxiliary function �:

���� � ������
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����	��� �


����	��� �
 �
����

	��
�	 ����	�	��


with �� � 	��� � � � � ��
 and the auxiliary function defined
thanks to the following expression of likelihood:
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In which 	 �
�	��
 is the partial derivative of the compensation

function with respect to the observation � for the time frame
� and �	 ���������

	�� �
 is the probability of the  -th emit-
ting state �	 being � and its principal Gaussian component
�	 being � knowing the sequence of observations � ��� and
�	�� (forward-backward probability).

Let a simple transformation 	��	����
 � ���� � !�.
Then the bias parameters "	�� � �!�� � � � � !	��� can thus
be estimated over the optimum Viterbi path:
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(2)

where

�	 ���������
	�� �
 � �	�	 � �� �	 � ������� "	��


(derived in [9] thanks to forward - backward probabilities).
(2) converges toward an optimum bias that maximizes the
overall likelihood of a state sequence.

The �	 ���������
	�� �
 probability is unavailable during

alignment. In our algorithm, we make the hypothesis that
the forward probability

#	 �����
	�� �
 � �	�	 � �	 � �� �	 � ���	��


could be used as a weighting factor in equation (2) and leads
to the following expression:
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(3)

Equation (3) can be simplified: we assume that the sums
over all possible states and Gaussian components at time  

can be fairly approximated by the contribution of the pair
	�� �
 that maximizes #	 �����

	�� �
 alone. Let 	�� �
	 be
that pair. Then (3) becomes:

!��� � !� �


����������������
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����

	��

�
��
������

(4)

Thus, in our method, computation of the bias at time �

does not require backtracking along a path. On the contrary,
at each time frame t, the most probable state in the forward
probability sense is used to re-estimate the transformation
parameters that would maximize this probability. Hence,
the compensation function is recursively computed at each
time frame by a simple equation.
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Similarly, an affine transform 	�	����
 � �� � ����� !�
can be estimated as follow:

���� � �� �
����� ����� �

���
���
� ����� �

�
��
������

Æ���

���� � �� �
�

Æ���

�
������������� �������

�

��
����

�

Æ��� �
�

����

�
���� �

���
���

�
� ������

�

���� �

����
���

���
��������

	 ���� �

����
���

��

��������

���� �

����
���

�

��������
	 ���� �

������ � �� � 
��������

����������

2.2. Forgetting Factor

This algorithm estimates a transformation thanks to a se-
quence of states that are not guaranteed to be part of the
optimal Viterbi path. Thus, if the first states of the sequence
effectively model the observations sequence, the matching
transformation is efficient. Hence the following observa-
tions are correctly mapped onto the training space. On the
other hand, if the state sequence does not belong to this op-
timal Viterbi path, then our algorithm should reduce the in-
fluence of those states on the estimation process. Thus, we
propose to integrate a forgetting process in our algorithm to
reduce the influence of the past events in the case of non-
stationary noise. As shown in equation (5), we choose to
weight the re-estimation term by a fixed coefficient 		 :

!��� � !� � 		 �


����������������

��
��������

����

	��

�
��
������

(5)

In the above equation, 		 is a forgetting factor with � 	
		 	 �. The value of this factor is currently fixed experi-
mentally. A similar forgetting factor is used for the compu-
tation of the affine function’s parameters.

3. EXPERIMENTAL FRAMEWORK

3.1. VODIS Database

All the experiments have been conducted on the Voice-Ope-
rated Driver Information Systems (VODIS) Database. This
corpus gathers ��� french speakers. The speakers were di-
vided into two sets: the training set (Training, ��� speakers)
and the test set (Test, �� speakers). The recordings were
made in french, in a moving car with various driving sit-
uations (opened window, traffic/highway, radio). Speakers
were asked to utter phone numbers (phone numbers task,

��� confidence interval is 
��) and numbers up to �����
(numbers task, ��� confidence interval is 
��). Notice
that french phone numbers are composed of numbers rank-
ing from � to ��. The speech sequences have been collected
by two microphones, synchronously. The first microphone
(close talk) was placed close to the mouth of the speaker and
collected “clean” speech with an average Signal to Noise
Ratio (SNR) of ���� dB. The second one was placed on the
rear-view mirror and collected distorted speech with an av-
erage SNR of ���� dB (far-talk). The signal was sampled at
����� Hz, and encoded in �� dimensions cepstra sequence
composed by �� MFCC, �� � and �� ��. We used �-
states phoneme models, each state composed of a mixture
of � Gaussian probability density functions. The models
were trained over all the close-talk utterances of Training.

3.2. Non Stationary Added Noise

The close-talk of the Test set for the numbers task have been
artificially corrupted by additive noise in the time domain
(buccaneer2.wav of the NOISEX database) in three differ-
ent manners. In linear experiment, noise is linearly increas-
ing throughout each sentence. In invLin experiment, noise
is linearly decreasing throughout. And finally, in triangle
experiment, noise linearly increases during the first half of
each sentence and then linearly decreases.

Table 1 presents the word accuracy (in percent) of our
algorithms on clean data (clean) and on artificially corrupted
data (linear, triangle and invLin). Two transformations have
been tested: a simple bias (Bias) and an affine transform
(Affine). They are compared to recognition without com-
pensation (Baseline) and with MCR. Our algorithm signif-
icantly outperforms MCR for the triangle and invLin. This
difference shows that the use of Viterbi statistics gives a
more precise estimation of bias right from the first frames,
contrary to MCR.

Baseline MCR Bias Affine
clean (SNR: 20.3 dB) 89.9 90.2 91.9 90.9
linear (SNR: 16.8 dB) 67.3 83.6 82.3 83.4
triangle (SNR: 17.7 dB) 75.6 81.3 82.3 83.8
invLin (SNR: 16 dB) 50.5 52.4 76.9 79.4

Table 1. Word accuracy (in %) on added noise numbers
recognition task (ff� ���).

Figure 1 represents the evolution of Bias on the first cep-
stral coefficient ($�) of one numbers sentence corrupted by
a linearly decreasing additive noise and two values of 		 :
��� (no errors) and ��� (no forgetting process, sentence was
not recognized). This figure shows that a lower ff enables
to reduce the influence of an incorrect state.
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Fig. 1. Evolution of the Bias’s value on $� for one number
utterance, corrupted by invLin noise.

3.3. Real Car Noise

Experiments was then conducted on naturally noisy utter-
ances (Test collected on far-talk). Table 2 represents the
results of classical compensation methods (Baseline, MCR,
SS, PMC) and transforms given by our algorithm (Bias and
Affine with a forgetting factor of ���). It shows that Affine
method outperforms significantly all classical methods for
the numbers task and that both Bias and Affine methods
are significantly more efficient for the phone numbers task.
Table 3 represents the influence of the forgetting factor (		 )

Baseline MCR SS PMC Bias Affine
numbers 63.5 67.3 72.1 72.8 72.9 76.4
phone
numbers 78.6 80.8 79.3 81.6 83.5 86.3

Table 2. Word accuracy on far-talk test set (SNR: 10.8 dB,
ff=0.8 for affine transformation).

on word accuracy for both the phone numbers and the num-
bers tasks realized on the far-talk set. It shows that, in real
life noise, Affine is more easily influenced by 		 than Bias.

�� 0.4 0.5 0.6 0.7 0.8 0.9 1.0
numbers

Bias 72.9 72.9 72.8 72.5 72.5 72.7 72.9
Affine 74.5 75.2 75.6 75.1 76.4 75.6 74.6

phone numbers
Bias 84.2 84.1 84.0 83.9 83.8 84.0 83.5
Affine 86.2 86.1 86.0 86.4 86.3 86.1 85.0

Table 3. Word accuracy on far-talk test set with respect to
the forgetting factor 		 .

4. CONCLUSION AND FUTURE WORK

This article presents an on-line frame-synchronous noise
compensation algorithm using the theoretical framework of
Stochastic Matching. This algorithm does not need any
a priori information on the environment and compensates
non-stationary noise. The basic idea is to use forward prob-
abilities in the estimation of the simple affine transforma-
tion’s parameters. Moreover, a simple yet efficient forget-
ting process allows our algorithm to cope with non station-
ary environment. To evaluate the algorithm we have chosen
to recognize numbers and phone numbers pronounced in a
moving car. For both these tasks, our method significantly
outperforms the frame-synchronous MCR and spectral sub-
traction techniques and PMC. Moreover, contrary to MCR
and PMC, our technique does not require any specific mod-
els training and, thus, can be used along with other com-
pensation techniques. Future work will involve studies on
class-specific transforms based on a tree structure and a self-
evoluting forgetting factor.
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