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ABSTRACT

We present a frame-synchronous noise compensation algo-
rithm that uses Stochastic Matching approach to cope with
time-varying unknown noise. This method proposesto esti-
mate simple mapping functionin parallel with Viterbi align-
ment. The technique is entirely general since no assump-
tion is made on the nature, level and variation of noise.
Our agorithmis evaluated on the VODI S database recorded
in a moving car. For various tasks, our technique outper-
forms significantly classica methods. For instance, using
the affine transformation the proposed algorithm gives an
error rate improvement of 13.3 % compared to Parallel
Model Combination (PMC), 15.5 % on Spectral Subtrac-
tion (SS) and 27.8 % on frame-synchronous Mean Cepstre
Removal (MCR) for the numbers recognition task in real
noise.

1. INTRODUCTION

An automatic speech recognition (ASR) system givesasig-
nificant degradation in performanceswhen used in an envi-
ronment that does not match its training environment. This
mismatch is due mostly to additional noise sources and dis-
crepancies in channels and speakers. Those mismatch
sources may be non-stationary and little a priori informa
tion about them is available.

Severa techniques have been proposed to enhance
speech in arobust manner. Two possible approaches can be
explored. First, the parameters of the HMMs can be modi-
fied to make the transformed stochastic model s better char-
acterize the distorted features. This approach, called adap-
tation, gathers several techniques such as PMC [1], MAP
[2] and MLLR [3]. Second, the corrupted features can be
adjusted thanks to a transformation that is estimated from
the noise characteristics. This set of methods, called com-
pensation, gathers techniques such as MCR and Stochastic
Matching [4]. The method developed here belongs to this
category.

When acoustic environments are known to be
non-stationary, three types of methods can be used. First,
noise and channel can be modeled by HMMs trained by
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prior measurement of the environment [5]. Second, a bank
of Kalman filters can be used to compensate the effect of
time-varying noise [6]. Finally, sequential EM agorithms
track additive noise parametersin cepstral domain [7].

Our work is based on [8] where an approximation of
the mismatch function was performed in order to reduce the
Kullback-Leibler information. Those derivations led to a
recursively updated bias which expression was close to the
one obtained in [4] with a Maximum-Likelihood approach.
Compared to [4], where the batch estimation of mismatch
function is derived, we use a frame per frame approach.
Frame synchronous algorithms are naturally appealing to
cope with non-stationary noise sources even if they often
face convergence problems linked to the scarcity of data.
One of the most popular frame synchronous technique is
MCR: the mean of theincoming sequence of cepstrais com-
puted and subtracted to the next observation.

We believe that this method can be enhanced by tak-
ing into account statistics of the HMMs derived during the
recognition. In the frame synchronous compensation mode,
compl ete statistics (forward-backward probabilities) are dif-
ficult to obtain because the end of sentence is not available.
One solutionisto calculate these statistics on short windows
asin[8]. Another solution, proposed here, isto approximate
these statistics by forward probabilities. The basic idea of
our method is as follows. First, the hypothesisis made that
during the Viterbi alignment, the states linked to the high-
est forward probabilities give a good modelisation of the
speech observations. Then, the parameters of the mismatch
function are estimated in order to enhance the likelihood
of the observation given those states. Consequently, this
on-line algorithm performs compensation in paralel with
recognition and does not need any a priori information on
the nature of the noise. Compensation transform is esti-
mated frame per frame and confidence in its parameters is
gained as forward probabilities computation goes a ong.

In this paper, we first present the theoretical framework
beneath this method. Then two linear mapping functionsare
developed and a discussion on a forgetting processis open.
In section 3, we present experimental results to compare our
algorithm with classical techniquesintimevarying artificial
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noise and in real-life car noise. Finaly, in section 4, we
draw conclusion and describe future work.

2. FRAME-SYNCHRONOUS COMPENSATION

2.1. Description of the algorithm

In the following, the one dimension case is treated, al the
derivation being easily extended to multidimensional caseif
diagonal covariance matrices are used. We assume that the
clean signal spectrum z is distorted by noise and gives y .
It can be modeled as follows:

ys:hs®ws +ns (1)

where ® isthe convolution operator, & ; isthe channel noise,
n isthe additive noise and the s subscript denotes the spec-
tral domain. In the cepstral domain, (1) becomes:
y=2—g(zs,ns,hs) 2z —g(y)

where g(zs,ns, hs) IS @ non-linear function without any
regular expression. Usually, the exact values of = 4, ns and
hs are unknown. In practice, this function is approximated
by g(y). The goa of compensation is to find a transforma-
tion f suchthat f(y) approachesz: f(y) ~ x

Let us consider a Hidden Markov Model recognition
system of M N-statesmodels. Each staten is characterized
by mixture of K gaussian probability functions of mean
K(n,ky and variance o, ) With k& € {1,...,K}. Inthe
following, the pair (n, k) represent the k-th Gaussian com-
ponent of the n-th state.

Let S; = {so,...,s:} denotes a partial state sequence
and Yr = {yo,...,yr} be asequence of noisy observa-
tionsin the cepstral domain, corresponding to the sequence
of clean features X1 = {xo, ... ,z7}.

Consider 6§ as the set of parameters of a transforma-
tion f,(y) from the testing observation space to the training
space. It has been shown in [8] that the set & maximizing
the Kullback-Leibler information .J(8) = E{log(p(Y+|0)}
can be approximated by asequence {6;} that maximizesthe
auxiliary function Q:

b1 = arggnathJrl(@tae)
41
Qi+1(04,0) = 2_:1 Lrjis1(©r-1)

with ©; = (b, ... ,6:) and the auxiliary function defined
thanks to the following expression of likelihood:

LT|t+1(®T—1) = log(|fé(yt)|) _
N K
DD Yrlt41,0,_, (M, k)M

B}
n=1k=1 T(n.k)

Inwhich f(y,) isthe partial derivative of the compensation
function with respect to the observation y for the time frame
t and v7e11,0,_, (1, k) is the probability of the 7-th emit-
ting state s being n and its principal Gaussian component
g, being k knowing the sequence of observationsY,; and
O, _1 (forward-backward probability).

Let a simple transformation fg, (yt+1) = yer1 + by
Then the bias parameters B, _; = {bo,... ,b,_1} canthus
be estimated over the optimum Viterbi path:

N K
k Ye+1+bt —l(n k)
+1\t+1,Bi(na )027

2k &
L @

i % i Vrlt41, BT 1 (n,k)

Tl k)

where

,YTlt-‘rl,B-,-_l(n’ k) = p(ST =n,9r = k|}/t+1, Brfl)
(derived in [9] thanksto forward - backward probabilities).
(2) converges toward an optimum bias that maximizes the
overal likelihood of a state sequence.

Theyj¢41,0,_, (n, k) probability is unavailable during
alignment. In our algorithm, we make the hypothesis that
the forward probability

ar|®f,1(na k) =p(Yr,sr =n,9; = k'|@'r—1)
could be used as aweighting factor in equation (2) and leads
to the following expression:

Y4110t —L(n k)
Y17t = Bnk)

T(n,k)

b} % 3 Tz

(n k)

Qt41|B, (n, k)

N
Py

mw

©)

biy1 = by —

Equation (3) can be simplified: we assumethat the sums
over al possible states and Gaussian components at time
can be fairly approximated by the contribution of the pair
(n, k) that maximizes a-|p._, (n, k) aone. Let (n, k), be
that pair. Then (3) becomes:

Ye+14bs —fi(n k), 4 g

U(Z"vk)t+1 (4)

bt+1 = bt - i+1
1

S -
=1 Tnbo)r

Thus, in our method, computation of the bias at time ¢
does not require backtracking along a path. On the contrary,
at each time framet, the most probable state in the forward
probability sense is used to re-estimate the transformation
parameters that would maximize this probability. Hence,
the compensation function is recursively computed at each
time frame by a simple equation.
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Similarly, an affinetransform f(y;+1) = a¢ * Y41 + by
can be estimated as follow:

(mes1 + Beyr + % — (ye+1 — 37)Deq1)

b = b —
t41 t I
1 1
at+1 = at — m mt+1(yt+1Ct+1 - Dt+1) - a—tCt+1
1
det1 = t41 2
Cit1 (Et+1 + :—?) = (Dt41)
t+1 y2 t+1 y
Bur = Yo, Dun=3
=1 U(",k>f =1 U(",k>f

t+1 1
Ciy1 = 22—
T=1 U(",k>f

@Ye+1 + bt = Pnk) g

y Miy1 =

2
U(n,k')t—u

2.2. Forgetting Factor

This algorithm estimates a transformation thanks to a se-
guence of states that are not guaranteed to be part of the
optimal Viterbi path. Thus, if the first states of the sequence
effectively model the observations sequence, the matching
transformation is efficient. Hence the following observa-
tions are correctly mapped onto the training space. On the
other hand, if the state sequence does not belong to this op-
timal Viterbi path, then our algorithm should reduce the in-
fluence of those states on the estimation process. Thus, we
propose to integrate a forgetting process in our algorithm to
reduce the influence of the past events in the case of non-
stationary noise. As shown in equation (5), we choose to
weight the re-estimation term by afixed coefficient f f:

yt+1+bt_#(n.k)t+1
U(ZHJG)):Jrl
bt+1:bt_ff*t+1— ©)
1

S
=1 T(nk)r

In the above equation, ff is a forgetting factor with 0 <
ff < 1. Thevalue of this factor is currently fixed experi-
mentally. A similar forgetting factor is used for the compu-
tation of the affine function’s parameters.

3. EXPERIMENTAL FRAMEWORK

3.1. VODIS Database

All the experiments have been conducted on the Voice-Ope-
rated Driver Information Systems (VODIS) Database. This
corpus gathers 200 french speakers. The speakers were di-
videdinto two sets: thetraining set (Training, 159 speakers)
and the test set (Test, 41 speakers). The recordings were
made in french, in a moving car with various driving sit-
uations (opened window, traffic/highway, radio). Speakers
were asked to utter phone numbers (phone numbers task,

95% confidenceinterval is +1%) and numbers up to 12000
(numbers task, 95% confidence interval is +1%). Notice
that french phone numbers are composed of numbers rank-
ing from 0 to 99. The speech sequences have been collected
by two microphones, synchronously. The first microphone
(closetalk) was placed close to the mouth of the speaker and
collected “clean” speech with an average Signal to Noise
Ratio (SNR) of 20.7 dB. The second one was placed on the
rear-view mirror and collected distorted speech with an av-
erage SNR of 10.8 dB (far-talk). The signal was sampled at
11025 Hz, and encoded in 36 dimensions cepstra sequence
composed by 12 MFCC, 12 A and 12 AA. We used 3-
states phoneme models, each state composed of a mixture
of 8 Gaussian probability density functions. The models
were trained over al the close-talk utterances of Training.

3.2. Non Stationary Added Noise

The close-talk of the Test set for the numberstask have been
artificially corrupted by additive noise in the time domain
(buccaneer2.wav of the NOISEX database) in three differ-
ent manners. In linear experiment, noiseislinearly increas-
ing throughout each sentence. In invLin experiment, noise
is linearly decreasing throughout. And finaly, in triangle
experiment, noise linearly increases during the first half of
each sentence and then linearly decreases.

Table 1 presents the word accuracy (in percent) of our
algorithmson clean data (clean) and on artificially corrupted
data (linear, triangleand invLin). Two transformationshave
been tested: a simple bias (Bias) and an affine transform
(Affine). They are compared to recognition without com-
pensation (Baseling) and with MCR. Our agorithm signif-
icantly outperforms MCR for the triangle and invLin. This
difference shows that the use of Viterbi statistics gives a
more precise estimation of bias right from the first frames,
contrary to MCR.

Baseline | MCR | Bias | Affine
clean (SNR: 20.3 dB) 89.9 90.2 | 91.9 | 90.9
linear (SNR: 16.8 dB) 67.3 836 | 823 | 834
triangle (SNR: 17.7 dB) 75.6 813 | 823 | 838
invLin (SNR: 16 dB) 50.5 524 | 769 | 79.4

Table 1. Word accuracy (in %) on added noise numbers
recognition task (ff= 0.8).

Figure 1 representsthe evolution of Bias on thefirst cep-
stral coefficient (cp) of one numbers sentence corrupted by
a linearly decreasing additive noise and two values of f f:
0.8 (no errors) and 1.0 (no forgetting process, sentence was
not recognized). This figure shows that a lower ff enables
to reduce the influence of an incorrect state.
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Fig. 1. Evolution of the Bias's value on ¢, for one number
utterance, corrupted by invLin noise.

3.3. Real Car Noise

Experiments was then conducted on naturally noisy utter-
ances (Test collected on far-talk). Table 2 represents the
results of classical compensation methods (Baseline, MCR,
SS, PMC) and transforms given by our algorithm (Bias and
Affine with a forgetting factor of 0.8). It shows that Affine
method outperforms significantly all classical methods for
the numbers task and that both Bias and Affine methods
are significantly more efficient for the phone numbers task.
Table 3 representsthe influence of the forgetting factor (f f)

Baseline | MCR | SS | PMC | Bias | Affine
numbers | 63.5 673 | 721 | 728 | 729| 76.4
phone
numbers 78.6 80.8 | 79.3| 816| 835| 86.3

Table 2. Word accuracy on far-talk test set (SNR: 10.8 dB,
ff=0.8 for affine transformation).

on word accuracy for both the phone humbers and the num-
bers tasks realized on the far-talk set. It shows that, in real
life noise, Affineis more easily influenced by f f than Bias.

ff | 04 ] 05] 06 ] 07]08]09]10
numbers

Bias 729 | 729 | 728 | 725 | 725 | 727 | 729

Affine | 745 | 752 | 756 | 75.1 | 76.4 | 75.6 | 74.6

phone numbers

Bias 842|841 | 840 | 839 | 838 | 84.0 | 835

Affine | 86.2 | 86.1 | 86.0 | 86.4 | 86.3 | 86.1 | 85.0

Table 3. Word accuracy on far-talk test set with respect to
the forgetting factor f f.

4. CONCLUSION AND FUTURE WORK

This article presents an on-line frame-synchronous noise
compensation algorithm using the theoretical framework of
Stochastic Matching. This algorithm does not need any
a priori information on the environment and compensates
non-stationary noise. The basic ideaisto use forward prob-
abilities in the estimation of the simple affine transforma-
tion's parameters. Moreover, a simple yet efficient forget-
ting process allows our algorithm to cope with non station-
ary environment. To evaluate the a gorithm we have chosen
to recognize numbers and phone numbers pronounced in a
moving car. For both these tasks, our method significantly
outperforms the frame-synchronous M CR and spectral sub-
traction techniques and PMC. Moreover, contrary to MCR
and PMC, our technique does not require any specific mod-
éls training and, thus, can be used along with other com-
pensation techniques. Future work will involve studies on
class-specific transformsbased on atree structure and aself-
evoluting forgetting factor.

5. REFERENCES

[1] MJF. Gaes, Model-Based Techniques for Noise Robust
Soeech Recognition, Ph.D. thesis, Gonville and Caius Col-
lege, September 1995.

[2] J-L. Gauvain and C.-H. Lee, “Maximum a Posteriori Es-
timation for Multivariate Gaussian Mixture Observations of
Markov Chains,” |EEE Transaction on Speech and Audio Pro-
cessing, vol. 2, no. 2, pp. 291-298, 1994.

[3] C.J. Leggetter and PC. Woodland, “Maximum Likelihood
Linear Regression for Speaker Adaptation of Continuous Den-
sity Hidden Markov Models” Computer Speech and Lan-
guage, vol. 9, pp. 171-185, 1995.

[4] A.Sankar and C.H. Lee, “A Maximum Likelihood Approach
to Stochastic Matching for Robust Speech Recognition,” |IEEE
Transaction on Speech and Audio Processing, pp. 190-202,
1996.

[5] A.Vargaand R.K. Moore, “Hidden Markov Model Decompo-
sition of Speech and Noise,” in ICASSP, 1990, pp. 845-848.

[6] N.S. Kim, “Time-Varying Noise Compensation Using Multi-
ple Kalman Filters,” in ICASSP, 1999, pp. 1540-1543.

[7] N.S. Kim, D.K. Kim, and S.R. Kim, “Application of Sequen-
tial Estimation to Time Varying Environment Compensation,”
in |EEE Workshop on Speech Recognition and Understanding,
1997, pp. 389-395.

[8] L. Delphin-Poulat, C. Mokbel, and J. Idier, “Frame Syn-
chronous Stochastic Matching Based on the Kullback-Leibler
Information,” in ICASSP, 1998, pp. 89-92.

[9] V. Krishnamurthy and J.B. Moore, “On-line Estimation of
HMM Parameters Based on the Kullback-Leibler Information
Measure” |EEE Transaction on Signal Processing, vol. 41,
no. 8, pp. 2557-2572, 1993.

| - 655




