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ABSTRACT

This paper describes a robust feature extraction technique
for continuous speech recognition. Central to the technique
is the Minimum Variance Distortionless Response (MVDR)
method of spectrum estimation. We incorporate perceptual
information directly in to the spectrum estimation. This
provides improved robustness and computational efficiency
when compared with the previously proposed MVDR-MFCC
technique [10]. On an in-car speech recognition task this
method, which we refer to as PMCC, is 15% more accu-
rate in WER and requires approximately a factor of 4 times
less computation than the MVDR-MFCC technique. On
the same task PMCC yields 20% relative improvement over
MFCC and 11% relative improvement over PLP frontends.
Similar improvements are observed on the Aurora 2 database.

1. INTRODUCTION

Capturing the vocal tract transfer function (VTTF) from the
speech signal while eliminating other extraneous speaker
dependent information such as pitch harmonics is a key re-
quirement for accurate speech recognition [7, 9]. It is well
known that the vocal tract transfer function is mainly en-
coded in the short-term spectral envelope [11]. Therefore,
extracting the short-term spectral envelope accurately and
in a manner invariant to noise is crucial for robust speech
recognition. It is also widely accepted that incorporating
perceptual considerations in the feature extraction process
leads to improved accuracy and robustness [1, 4].
Mel-Frequency cepstral coefficients have proven to be
an effective set of features for speech recognition. In this
technique, a Mel-scaled filterbank is applied to the short-
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In LP-based techniques, the spectral envelope is mod-
eled by an all-pole filter whose coefficients are estimated
by minimizing the Mean-Squared Error(MSE) between the
spectrum and the LP filter’s frequency response. The as-
sumption is that the speech signal can be adequately mod-
eled by the filter when the input is a single pulse or white
noise [8]. However, this assumption does not hold exactly
for voiced speech when the excitation is quasi-periodic [11].
Moreover, the MSE minimization is for the speech spectrum
itself not to its envelope, [11], therefore as the analysis order
increases, especially for high pitch speakers, the envelope
obtained from LP analysis tends to follow the fine structure
of the speech spectrum and is biased towards strong har-
monics. Furthermore, LP based spectra are known to be
highly sensitive to noise.

Direct upper envelope estimation techniques using pitch-
synchronous and peak-picking techniques for computing the
upper envelope have shown a lot of promise but are com-
putationally expensive and prone to non-robust behavior in
noisy conditions [9].

In this paper, we describe a new feature extraction tech-
nique for continuous speech recognition. Central to the
technique is the Minimum Variance Distortionless Response
(MVDR) method of spectrum estimation. The method dif-
fers from previously proposed MVDR-MFCC technique in
that perceptual considerations are incorporated directly in
the spectrum estimation stage. This yields both accuracy
and computational complexity improvements. MVDR mod-
els provide elegant envelope representations of the short-
term spectrum of voiced speech. Furthermore, the MVDR
spectrum is capable of modeling unvoiced speech, and mixed
speech spectra. From a computational perspective, the MVDR
modeling approach is also attractive because the MVDR

term FFT spectrum to obtain a perceptually meaningful smoothed Spectrum can be simply obtained from a non-iterative com-

gross spectrum. This representation however has a limited
ability to remove undesired harmonic structure, especially
for high pitch speech. Furthermore, it has been observed
that for high pitch voiced speech, the formant frequencies
are biased towards pitch harmonics and their bandwidths
are therefore misestimated [9, 11, 7].
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putation involving the LP Coefficients, and can be based
upon conventional time-domain correlation estimates.

2. MVDR SPECTRAL ENVELOPE ESTIMATION

Inthe MV DR spectrum estimation method, the signal power
at a frequency w; is determined by filtering the signal by a
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specially designed FIR filter h(n) and measuring the power
at its output. The FIR filter h(n) is designed to minimize
its output power subject to the constraint that its response at
the frequency of interest, wy, has unity gain, namely

M
H(e™) = h(k)e 3k = 1. 1)
k=0

This constraint, known as the distortionless constraint, can
be written as v (w;)h = 1, where h = [hg, hy, - -+ , hp] 7T,
and v(w) = [1,e/?, e/ ... eM@IT  Mathematically,
the distortionless filter h(n) is obtained by solving the fol-
lowing constrained optimization problem,

min hZR ;1 1h subjectto vE(w)h=1. (2)

where Rps41 is the (M + 1) x (M + 1) Toeplitz autocor-
relation matrix of the data. The solution to this constrained
optimization problem is [12, 6]

RX/II+1V(W1)

hy = 1] .
v (W) Rz, v{(wr)
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The distortionless constraint ensures that the MVVDR dis-
tortionless filter h;(n) will let the input signal components
with frequency w; pass through undistorted, and the min-
imization of the output power ensures that the remaining
frequency components in the signal are suppressed in an op-
timal manner. This synergistic constrained optimization is a
key aspect of the MVDR method that allows it to provide a
lower bias with a smaller filter length than the Periodogram
method. Also, unlike the Periodogram method, the power
is computed using all the output samples of the bandpass
filter, which gives a reduction in variance too.

One may think that designing a special FIR filter and
computing its output power for all frequencies to obtain the
MVDR spectrum is computationally too costly. Fortunately,
there is a fast way of computing the MVDR spectrum. In
fact, the MVDR spectrum for all frequencies can be conve-
niently represented in a parametric form as [12]

1
- VAR, V(@)
Note that this represents the power obtained by averaging
several samples at the output of the optimum constrained
filter. This averaging results in reduced variance [5]. For

computational purposes, the Mth order MVDR spectrum
can be parametrically written as

1 1
S nlk)emivk ©
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The parameters p(k), can be obtained from a modest non-
iterative computation using the LP coefficients a; and pre-
diction error variance P, [12, 6]

iy = { 75 T M+ 1=k =2ty k0, M
w(=k),

Py (w) (4)

Pyry (w)

(6)

The (M + 1) coefficients, p(k), completely determine the
MVDR spectrum Py (w). From (5), the MVDR power
spectrum can also be viewed as an all-pole model based
power spectrum. Note also that a linear taper or triangu-
lar window is used in the definition of u(k) and this causes
MVDR spectrum be smoother in appearance than the LP-
based spectrum [12]. This makes the MVDR envelope a
better representative of VTTF since it smoothes out unnec-
essary excitation details. Empirical studies show that the
MVDR method is indeed effective in removing pitch har-
monics. Furthermore, a high order MVVDR spectrum fol-
lows the upper envelope closely which is a desirable char-
acteristic. Figure 1 compares the FFT-based, a low (15) and
high order (60) LP-based and a 60th order MVVDR-based
spectral estimate for a typical voiced sound frame. We ob-
serve that the low order LP envelope is inaccurate whereas a
high order LP envelope models the fine detail in the spectra.
The MVDR envelope on the other hand accurately repre-
sents the upper envelope and contains almost no excitation
information.
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Figure 1 Spectral envelopes: LP (solid), MVDR (dashed)

2.1. Perceptual MVDR-based Cepstral Coefficients (PM
CCs)

One approach to MVDR-based feature extraction would be
to simply replace the FFT spectrum estimate with a high or-
der MVDR spectrum estimate in the MFCC computation.
This was investigated in [10] and was shown to be very ef-
fective owing to better spectrum estimates, especially for
high pitch speech and noisy conditions. This approach how-
ever has several problems: high model order MVDR spec-
trum estimation is computationally very expensive. Further-
more the large-lag autocorrelation estimates required for the
high order LPC analysis are less reliable since they are forced
to be estimated from a small (typically 25ms window) data
sample. This causes high variance in the feature vectors
necessitating an additional smoothing step via temporal av-

k:—M,.,—1eraging. Finally, perceptual information was incorporated

into the spectrum after the spectrum estimation, in the pre-
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vious approach. It may be more advantageous to incorpo-
rate perceptual information in the spectrum estimation stage
directly.

We address the above issues by adopting an approach
similar to the Perceptual Linear Prediction technique [4],
where perceptually modified autocorrelation estimates are
obtained from a Mel-filtered spectrum. From these autocor-
relation estimates we obtain the MVVDR coefficients, u(k)s.
This has two advantages. First the autocorrelation estimates
are more reliable owing to the preceptual smoothing of the
spectrum and thus the MVDR estimation is more robust.
Second, the dimensionality of the MVDR estimation, and
hence its complexity, is reduced owing the relatively smaller
dimensionality of the Mel-Filterbank output.

The MVDR polynomial is a Laurent polynomial which
is positive on the unit circle. Therefore,in order to com-
pute the cepstral coefficients using the recursive procedure
as in PLP we have to perform a Spectral Factorization of
this polynomial, i.e. factor this polynomial as the modu-
lus squared of a real algebraic polynomial. Several numeri-
cal techniques exist for Spectral Factorization[13]. Bauer
method, Wilson method, Root calculation and Levinson-
Durbin method are some common numerical methods. We
experimented with the Levinson-Durbin method.

Cepstral coefficients can also be directly computed by
computing the power spectrum from the MVDR polyno-
mial using the FFT, taking the log, and computing the in-
verse FFT or DCT. The length of the FFT must be carefully
chosen to prevent aliasing. We observed that this method is
both computationally efficient and is more accurate than the
Levinson-Durbin method.

3. EXPERIMENTAL EVALUATION

We experimented with the PMCC technique on two databases
— an automotive speech recognition application and the Au-
rora 2 database.

All experiments were conducted on a rank-based syn-
chronous Viterbi decoder. The system uses context-dependent
sub-phone classes which are identified by growing a deci-
sion tree using the training data and specifying the terminal
nodes of the tree as the relevant instances of these classes.
The raining feature vectors are poured down this tree and
the vectors that collect at each leaf are modeled by a mix-
ture of Gaussian pdf’s, with diagonal covariance matrices.
Each leaf of the decision tree is modeled by a 1-state Hid-
den Markov Model with a self loop and a forward transition.
Output distributions on the state transitions are expressed in
terms of the rank of the leaf instead of in terms of the fea-
ture vector and the mixture of Gaussian pdf’s modeling the
training data at the leaf. The rank of a leaf is obtained by
computing the log-likelihood of the acoustic vector using
the model at each leaf, and then ranking the leaves on the
basis of their log-likelihoods.

For the in-car task, the training data consists of speech
collected in a stationary and moving car at two different
speeds — 30 mph and 60 mph. Data was recorded in several

different cars with a microphone placed at a few different
locations — rear-view mirror, visor and seat-belt. The train-
ing data was also appended by synthetically adding noise,
collected in a car, to the stationary car data. Overall we
have approximately 500 hours of training data.

The baseline system was trained using standard Periodogram-

based MFCC vectors. Speech was coded into 25 ms frames,
with a frame-shift of 15 ms. Since we are dealing with car
noise, the 24 triangular Mel-filters were chosen in the fre-
guency range [200Hz — 5500Hz]. Each frame was repre-
sented by a 39 component vector consisting of 13 MFCCs
and their first and second time derivatives. Only the clean
(stationary car) data was used to grow the decision tree. The
Gaussian Mixture Models were trained on the entire data.
Overall, we had 680 HMM states in our acoustic model. A
total of just over 10,000 Gaussians model all the states.
Next, 39 dimensional PLP, MVDR and PMCC features
with time-derivatives were generated. With these new fea-
ture streams, the means and the variances of the Gaussians

and the transition probabilities of the HMM’s were re-estimated

using a Baum-Welch procedure to generate the correspond-
ing acoustic models.

The test data comprises of 22 speakers recorded in a car
moving at speeds 0 mph, 30 MPH and 60 mph respectively.
Four tasks were considered: addresses, commands, digits
and radio control. The test set, in total, has over 73,000
words in it.

Table 1. WER for in-car data with different front-ends.

Speed/Systems || MFCC | PLP | MVDR | PMCC
00mph 1.18% | 1.14% | 1.14% | 1.13%
30mph 2.19% | 1.93% | 2.16% | 1.97%
60mph 6.65% | 5.93% | 6.22% | 4.92%
all 3.34% | 3.01% | 3.18% | 2.68%

Table 2. Relative improvement of PMCC with respect to
MFCC, PLP and MVDR features.

Speed/Systems || MFCC PLP MVDR
00mph 423% | 0.87% | 0.87%
30mph 10.04% | -2.07% | 8.79%
60mph 26.01% | 17.03% | 20.90%
all 19.76% | 10.96% | 15.72%

PMCC improves the results approximately 20% with re-
spect to the MFCC baseline, 11% with respect to the PLP
and remarkably 15% with respect to the previous MVDR-
MFCCs. This shows that the use of MVDR technique in
PMCC is much more robust to noise than MVDR-MFCCs.
Note that the improvement becomes much more apparent
as the data becomes more and more noisy. In most cases,
noise robustness results in some sacrifice in clean condi-
tions, however, in the PMCC case there is a considerable
amount of improvement in 00mph conditions which can be
considered as being very close to clean conditions. This can
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be attributed to the accurate envelope estimation achieved
by the MVDR methodology.

For the Aurora 2 noisy digits database we use 156 sub-
phone classes and a total of 3.5K Gaussians. As the training
set we used multi-condition training and ran all the recogni-
tion tests on set A which consists of 4 different noise condi-
tions (subway, babble, car and exhibition) at different SNR
values. Averaging was done on 0dB-20dB SNR levels.

As seen in Table 3, PMCC provides significant improve-
ments for almost all SNR levels. We also see a significant
improvement in clean conditions. The averaged improve-
ment for this artificially degraded database is 10.23%. It
is worth noting that PMCC is much more effective for real
data but it still gives considerable improvement over MFCC,
PLP and MVDR-MFCC even for artificially degraded data.

Table 3. WER results for Aurora 2 (Set A) and relative im-
provement of PMCC with respect to MFCC baseline.

SNR || MFCC PLP MVDR | PMCC Imp.

-5dB || 65.60% | 65.56% | 65.28% | 61.26% | 6.62%
0dB 28.51% | 28.20% | 28.36% | 25.23% | 11.51%
5dB 9.27% | 8.73% | 9.65% | 8.50% | 8.31%
10dB || 3.23% | 3.28% | 3.23% | 3.26% | -0.93%
15dB 1.65% | 1.86% | 1.77% | 1.50% | 9.31%
20dB 1.29% | 1.32% | 1.22% | 1.04% | 19.38%
Clean || 0.91% | 0.78% | 0.89% | 0.78% | 14.28%
0-20 8.79% | 8.68% | 8.84% | 7.89% | 10.23%

Table 4 provides a comparison of the computational com-
plexity of the MFCC, MVDR-MFCC and the PMCC tech-
niques in terms of the number of operations®. The PMCC

Table 4. Computational complexity of different front-ends

System || # Operations | Increase(%o)
MFCC ~6000 N/A
MVDR ~28000 370
PMCC ~8000 33

technique can been to be far superior to the previously pro-
posed MVDR-MFCC technique and requires only a modest
increase in computations over the MFCC method.

4. CONCLUSIONS

We described a new feature extraction technique, PMCC,
for robust speech recognition. PMCC is based on MVDR
envelope estimation technique which was shown to be accu-
rate and robust. Results on two databases, an in car recogni-
tion task and the Aurora 2 database, showed that this tech-
nique provides significant improvements in accuracy and

pased on awindow size of 25ms at 11KHz sampling rate

robustness. These improvements come with only a mod-
est increase in computational complexity. The PMCC tech-
niques is thus ideally suited for low resource speech recog-
nition systems.

5. ACKNOWLEDGEMENTS

The authors thank Prof. B.D. Rao of UCSD for many valu-
able discussions. U.H. Yapanel thanks his advisor John H.L.
Hansen of CSLR for his continued support and encourage-
ment for the summer project in which the work was per-
formed.

6. REFERENCES

[1] S.B. Davis and P. Mermelstein, “Comparison of para-
metric representations of monosyllabic word recogni-
tion in continuously spoken sentences,” IEEE Trans.
on Acoustics, Sgeech and Signal Processing, Vol 28,
pp 357-366, 1930.

[2] A. El-Jaroudi and J. Makhoul, *“Discrete All-Pole
Modeling,” IEEE Trans. Signal Processing, Feb. 1991.

[3] M. N. Murthi and B. D. Rao, “All-pole modeling of
speech based on the minimum variance distortionless
response spectrum,” IEEE Trans. on Speech and Audio
Processing, pp. 221-239, May 2000.

[4] H. Hermansky, “Perceptual Linear Prediction (PLP)
Analysis of Speech™ JASA, pp 1738-1752, 1990.

[5] P. Stoica and R. Mases, Spectral Analysis Prentice-
Hall, Englewood Cliffs, New Jersey, 1997.

[6] S.L. Marple Jr., Digital Spectral Anal¥fsis with Aé);)li—
cations, Prentice-Hall, Englewood Cliffs, NJ, 1987.

[7] M.J. Hunt “Spectral Signal Processing for ASR”,
Proc. ASRU’99, December 1999

[8] J. Makhoul *“Linear Prediction: a Tutorial Review”,
Proc. of IEEE, vol. 63, no.4, pp.561-580, 1975

[9] L. Gu and K. Rose “Perceptual Harmonic Cepstral
Coefficients as the Front-end for Speech Recognition”,
Proc. ICSLP’00, Beijing, China

[10] S. Dharanipragada and B.D. Rao “MVDR-based Fea-
Elérﬁgsxgr%?lon for Robust Speech Recognition”, Proc.

[11] M. Jelinek and J.P, Adoul “Frequency-domain Spec-
tral Envelope Estimation for Low Rate Coding of
Speech””, Proc. ICASSP’99, pp.253-256

[12] S. Haykin Adaﬁtive Filter Theory, Prentice-Hall, En-
giewood Cliffs,NJ, 1991.

[13] A.H. Sayed and T. Kailath, “A Survey of Sloectral fac-
torization methods,” Numerical Linear Algebra with
Applications, Vol. 8, pp. 467-496, 2001.

| - 647




