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ABSTRACT

Large margin classifiers such as Support Vector Machines
(SVM) or Adaboost are obvious choices for natural language doc-
ument or cal routing. However, how to combine several binary
classifiersto optimize the whole routing process and how this pro-
cess scales when it involves many different decisions (or classes)
isacomplex problem that has only received partial answers[1, 2].
We propose a global optimization process based on an optimal
channel communication model that allows a combination of pos-
sibly heterogeneous binary classifiers. As in Markov modeling,
computational feasibility is achieved through simplifications and
independence assumptions that are easy to interpret. Using this
approach, we have managed to decrease the call-type classification
error rate for AT& T's How May | Help You (HMIHY*™) natural
dialog system by 50%.

1. INTRODUCTION

Since the first demonstration of the HMIHY™) system [3], Inter-
active Voice Response (IVR) systems increasingly rely on natu-
ral language call routing, where a computer attempts to recognize
many possible outcomes to an open-ended prompt. The traditional
solution to sentence classification is the bag-of-words approach
used in Information Retrieval. Because of thevery large dimension
of the input space, large margin classifiers such as SYMs 4, 5] or
Adaboost [1] were found to be very good candidates. To take into
account context when two sentences are compared, one can match
N-grams (a substring of N words) rather than words [1]. Sub-word
features can also be considered [6].

Large margin classifiers were initially demonstrated on binary
classification problems, where the definition of the margin is un-
ambiguous, and the reasons why this margin leads to good gen-
eralization are reasonably well understood. Usually, their perfor-
mance can be expressed as a single number: the binary classifica-
tion accuracy. Unfortunately, to generalize these binary classifiers
to Multi-Class Classifiers (MCC) is not straightforward (in the rest
of the paper, the word classifier will only cover the binary case).

The definition of a multi-class margin whose maximization is
supposed to optimize the generalization, and the resulting opti-
mization problem, lead to solutions which may be too complex to
be practical [7]. The most popular approach is to combine binary
classifiers and to produce a vector whose components are the out-
put of one binry classifier. This vector is then used to make the
multiclass decision. Error Correcting Output Codes (ECOC) pro-
vide agood framework for this approach [2]. However, this leaves
us with the choice of the code . In the 1-vs-others case, we have
one classifier per class ¢, with the positive examples taken from
class ¢ and the negative examples from the other classes. Class ¢
is recognized when the corresponding classifier yields the largest
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output. In the 1-vs-1 case, each classifier only discriminates one
class from another: we need atotal of M (M — 1)/2 classifiers.

After choosing a multiclass combination of binary classifiers,
wearetill left with alarge number of error criteriato choose from,
most of them based on a combination of precision and recall for
each class [5] or how the classes areranked [1]. Another problem
which has seldom been addressed isthe choice of the model, which
is usually assumed to be the same for all the classifiers. However,
some of the classifiers have to learn tasks with richer data than
others, and may benefit from more complex models [6].

Ideally, one would like define a framework that provides us
with acomplete solution, that covers all choicesin aglobally opti-
mal way. Section 2 describes an approach that, under well under-
stood simplifying assumptions, attempts to get closer to thisideal.

2. ACHANNEL OPTIMIZATION FRAMEWORK

We have seen in the introduction that defining the optimal large
margin multiclass architectureisstill an open problem, with alarge
variety of solutions proposed for each of the critical choices: (i) the
loss function that must be minimized, (ii) the output code (i.e. the
set of binary classifiers to choose) and (iii) the optimization pro-
cedure to minimize this loss. Note the order in which we want to
make these choices: given an application, the loss function should
be uniquely determined (and measured in dollars or customer sat-
isfaction), and all the other choices must be derived from thisim-
posed loss function. In practice, there are many waysto “idealize’
aredl loss, and we start with the most common one for telecom-
munication applications.

2.1. Theoptimal communication channel

The first smplifying assumption is that we have an optimal com-
munication channel. Take the example of interactive call routing:
the objective isto obtain as much information as possible from the
user within the smallest interaction time. We assume that after a
sufficient number of confirmation prompts, the user request is sat-
isfied, so the goal isto minimize the coding costs of such prompts.
For a problem with two possible outcomes ¢ and ¢, the ideal com-
muni cation channel would work in three steps. First, the user sends
the request x. Second, the computer repliest with an estimate of
the posterior probability to detect each class p(c|x) = o(x) and
p(¢|x) =1 —o(x). Usualy, alogistic remapping is applied to ob-
tain an output ranging from 0 to 1: o(x) = m Third,
the user sends enough bits to correct the result so that it matches

10ur ideal scheme assumes no cost to send o(x) as we can duplicate a
model of the computer that computes o(x) on the user side.
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the target y. Using an optimal entropic coder, this would corre-
spond to the Kullback-Liebler (KL) divergence?

H(ylo(x)) = ylog 5 + (1 - )log o5 (@

2.2. Classindependence assumption

This first assumption gave us the loss function we shall minimize,
namely the KL divergence. However, when moving to a problem
with more than 2 outcomes, the optimization of thisKL divergence
cannot always be reduced to binary classifications. The second as-
sumption is to uncouple the problem, and consider we have inde-
pendent problems for each class. Thismeansthat observing that an
example belongs to classes ¢ or d are independent, non-exclusive
events, i.e. P(c,d|x) = P(c|x)P(d|x). An obvious consequence
isthat an example can belong to several different classes (multiple
label examples). Denote n the number of independent classes and
oc(x) the estimated probability to observe class ¢, one can show
that the total KL divergence isthe sum of the class KL divergences
between the o.(x) and the target outputs y.. This assumption
gives us the code: we build an MCC out of n 1-vs-others binary
classifiers. Each classifier can be optimized separately.  Other
conditional independence assumptions lead to the 1-vs-1 case, but
they are significantly more complex.

2.3. Optimization: theright balance between regularized and
exhaustive search learning

Learning should attempt to find the function o over the input data
that minimizes an estimate of Ep(H (y|o(x))) where Ep is the
expectation over the true distribution of the data. Techniques based
on gradient descent or Expectation-Maximization could directly
minimize Er(y|o(x))) on atraining set 7. However, because of
the high dimensionality of the input, overfitting would be a major
issue, and we prefer to rely on techniques with good control over
generalization.

If the number of hypotheses corresponding to different param-
eters configurations in the model isfinite, we can consider exhaus-
tive search learning: for each hypotheses h € #, compute oy (x)
and measure Ey (y|on(x))) on a set of examples V' (caled the
validation set). The minimum hypotheses is kept. Note that we
should only choose between asmall number of hypotheses ||, as
uniform convergence bounds ([4] page 123) show that the estimate
on ¥V may overfit the generalization error by up to \/log |H|/|V].

Regularized learning should be used when the hypotheses
space becomes too large. Typicaly, a penalty term over the size
of the parameters is added to prevent excessive overfitting on a set
of examples 7 (called the training set). In the case of the SVMs,
this penalty is the inverse of the margin. Unfortunately, not every
parameter in our model can be subjected to regularized learning as
we do not know how to penalize some of the parameters. Also, ef-
ficient optimization algorithms require a convex form, which can-
not be obtained after logistic remapping.

In practice, we should separate parameters between the vast
majority that can be estimated through regularized learning of a

2In practice, the computer would ask for a confirmation that the out-
come shouldbey = 1if o(x) > 0.5 and y = 0 otherwise. User would
send back O if correct and 1 if wrong. So we need to encode a sequence of
bits where the 0 is much more likely than the 1. If the interactivity could
be ignored, arithmetic coding could compress this sequence to the entropic
limit.

convex function, and a small minority that we can afford to esti-
mate through exhaustive search.

The function f that performs binary classification before lo-
gistic remapping is agood candidate for regularized learning. Us-
ing SVMs with a kernel k, this function is parameterized by the
multipliers a with f(x) = ineTO‘ik(x7 x;). When a; # 0, x;
is called a support vector. Denoting g(x) = af(x) + b, the loss
corresponding to amis-classified example in Eq.(1) is

-] 9(x)if g(x) <0
RN E—ey ’“{ 0if g(x) > 0 @

While, for convexity reasons, SVMs cannot be directly optimized
for this loss, Eq.(2) shows it can be approximated with the hinge
loss traditionally used in SVMs [4]. Bayesian approaches [8]
(Gaussian processes, Relevant Vector Machines) should lead to a
finer level of understanding of how binary SVMs can beused in a
probabilistic model. The « that maximize the margin while mini-
mizing the loss are the Lagrange multipliers of aconvex optimiza-
tion problem that we solve with an iterative procedure that updates
the N maximum gradient violators and was first implemented in
SVMlight[9].

The parameters left to exhaustive search are the parameters
a and b in the logistic remapping, the kernel parameters and the
parameter C' (C+ and C_ if we use different ones for positive and
negative examples) that weight the SYM loss. Parametersa and b
can be chosen using a univariate logistic regression, to minimize
the total KL divergence [10] on a first set of validation data Vi
Z(x,y)evl H (ylo(x)).

For each choice of kernel or C' parameters, the SVM needs
to be retrained, so we can only afford a small set of parameter
hypotheses H. In summary, for each h € H, we train the SVM
frn(x) onset T, obtain ay, by, and o, (x) = 1+exp7(aifh(x)+bh)
on set V; and choose h that minimizes} - , ¢, H (ylon(x)) on
a second validation set V». To maximize the amount of validation
data available, and avoid reducing the amount of training data, we
can use adouble N fold cross-validation process to build Vi and
V> over al the training data available.

3. EXPERIMENTS

We now evaluate our ideas for SVMs for call classification on
the spoken language understanding (SLU) component of the the
AT& T's HMIHY®™ natural dialog system. In this system, users
are asking questions about their bill, caling plans, etc. Within the
SLU component, we are aiming at classifying the input telephone
cals into classes (cal-types), such as Billing Credit, or Calling
Plans [11, 12]. First, Section 3.1 describes an implementation
and measures the impact of a proper optimization of the SVMs
against basegline approaches whose performance is considered as
state-of-the-art for text classification, namely Boostexter [1] and
linear SVMs [5]. Second, Section 3.2 shows how this approach
was used to reduce the call-type classification error rate in the ac-
tual system.

3.1. Implementation and validation

Our methodology has been implemented as a software package
called Llama where, besides the training data, the user only needs
to specify the list of hypotheses kernels to explore. Validation sets
are set apart automatically and used to determine the optimal ker-
nel for each class. To our knowledge, this is the first implemen-
tation of multi-class SVMs with heterogeneous kernels. Llama
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Table 1. Error rates using 6058 unigrams as input

optimization also takes advantage of the fact that the kernel cache
can be shared between classifiers. For strict binary SVM classifi-
cation, we verified that its performance is the same as SVMlight.

To show that this methodology significantly improves per-
formance over a simple recombination of binary SVMs, a large
amount of data, representative of the problems that need to be
solved, was needed. We used 27892 training utterances, represent-
ing 48 call-types. This recently labeled data was preferred over
our standard data set which is used in Section 3.2: a much larger
number of examples allows more significant results and more call-
types makes classification more difficult. We did not use easy to
classify dialog acts classes such as “Yes’, “No” or “Hello”. Be-
cause our methodology does not explicit model rejection yet, we
aso avoided the “Other” class used to train an explicit rejection
model.

Results are reported for both unigram (Table 1) and bigram
(Table 2) inputs. In the case of unigrams, a sparse feature vector
detecting word occurrencesin the best® sentence recognized by the
speech recognizer iscomputed. 1n both cases, the Euclidean norm
of the feature vector is normalized to 1. We compared SVMswith
linear and degree 2 polynomial kernels. As abaseline, we also re-
port results on Boostexter using real Adaboost.MH with logistic
loss (it has been used for this type of task [13] and we found it
to be as good or better than Adaboost with exponential loss). The
following SVM configuration were tried: SVM p uses polynomial
of degree p, with C=1 and without logistic remapping; SVM pmap
adds logistic remapping; SVM pmapC lets C+ and C— be chosen
independently for each classifier (between 1 or 2). In addition,
SVM 12map represents an optimal recombination of SVM 1map
and SVM2map, where linear and degree 2 polynomials are se-
lected independently for each classifier.

In both figures the first column reports the Hamming error,
which is the number of binary mis-classifications accumulated
over the 48 classes and 7105 test utterances. The other columnsre-
port amulticlass error, which is the percentage of examples where
the class with the largest output does not match one of the target
classes. Note that is error may not be fully correlated with the
Hamming error. The test error is computed over 7105 test utter-
ances, thetrain error over 27892 training utterances and the thresh-
old error over the 4263 test utterances (a 40% reject rate) with the
largest output for the top candidate®.

Because they perform large margin classification in the same

SFeature extracted from full lattices are described in the next section.
The definition of efficient lattice kernels is the topic of a separate study (C.
Cortes and P. Haffner and M. Mohri, Lattice Kernels for Spoken-Dialog
Classification, Submitted to ICASSP 03)

4The asterisk stresses out MCCs which were not subjected to logistic
remapping, and where using the same threshold for al the classes may be
questionable.

MCC Hamming || Multiclass Error || Threshold MCC Hamming || Multiclass Error || Threshold
Error Test Train Error Error Test Train Error
Boostexter 337 19.9 15.1(*) Boostexter 34.2 8.4 14.5(*)
SVM1 4641 36.9 32.39 15.1(*) SVM1 4015 34.1 225 13.1(*)
SVM 1map 4704 35.1 27.8 15.1 SVM 1map 3968 31.6 15.2 12.2
SVM 1mapC 4789 33.7 25.6 14.1 SVM2 3777 31.8 3.56 11.1(*)
SVM2 3820 31.9 7.92 11.3(*) SVM2map 3750 30.8 329 111
SVM 2map 3807 311 6.64 11.2 SVM 12map 3749 30.8 329 11.0
SVM2mapC 3846 311 5.81 11.8
SVM 12map 3807 311 6.64 11.2 Table 2. Error rates using 15002 bigrams as input

feature space (with a different metric though), linear SYM and
Boostexter ® have similar performances. After optimizing SYM 1
performance with logistic remapping, SVM 1map applied to uni-
grams can be improved using either 2 degree polynomials or bi-
grams. The percentages of improvement are similar and typically
reduce the multiclass error from 34% down to 31.5%. The fea-
tures induced by 2-degree polynomial kernels correspond to every
pair of words found in an utterance (not just consecutive words).
Our best choice is SYM 12map on bigrams: because it uses lin-
ear SVMs whenever possible, it is faster than SVM2map. Note
that no further significant improvements were observed with de-
gree 3 polynomial kernels or trigram inputs, and results are not
reported here for lack of space. In summary, properly optimizing
the SVM architecture results in a 30% reduction of the threshold
error, which is our most significant measure of performance. Note
that this threshold error corresponds to a false reject rate of about
15%.

A surprising result found in Table 1 is that the automatic se-
lection of C performed in SVM pmapC actually increases the Ham-
ming error when compared to SVM pmap, while properly reducing
the KL error over the test data. This discrepancy suggests that
the hinge approximation in Eq.(2) is too strong. A similar phe-
nomenon is observed with SVM 12map: a significant reduction in
the KL error over SVM 2map does not translate into a reduction
of the Hamming error. We tried automatic selection of C' or the
kernel to minimize each classifier binary error rather than the KL
error, but results actually got worse, with excessive overfitting.

3.2. Deployment in theHMIHY system

The SLU component of HMIHY is a series of modules. The input
of the SLU component is a compressed form of an ASR lattice,
called word confusion network or sausage [11]. First a prepro-
cessor converts certain groups of words into a single token (e.g.
converting tokens “A T and T” into “ATT".). Then, Salient Gram-
mar Fragments (SGFs) [14] are matched in the preprocessed utter-
ance, filtered and parsed [ 11] to be used asfeaturesfor the call-type
classifier. SGFs are graphs combining salient phrases. How to
automatically acquire salient phrases from a corpus of transcribed
and labeled training data and cluster them into SGFsin the format
of Finite Sate Machines (FSMs) [15] isdescribed in [11, 14].

In the previous classifier [14], the learned SGFs are attached
to given call-types with weights. Then the classifier decides on the
call-type by combining the SGFs occurring in an utterance. With
SVMs, we obtain the SGFs as features, but |et the SVM decide on
how to exploit the occurrences of them in an utterance. Thanks
to the modular structure of the SLU component, this has been a

SAsillustrated in the case of bigram input, Boostexter may overfit, and
no obvious regul arization parameter isavailable to control this. The 34.2%
error rate reported in Table 2 corresponds to full convergence. Stopping
learning at the minimum of the test error would have yielded 33.2%.
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Fig. 1. Improvementsin call classification performance.

minor change in the implementation.

During our experiments, we have used 7647 utterances as our
training data and 1405 utterances as our test data. All the utter-
ances are responses to the first greeting in the dialog (e.g. “Hello,
This is AT&T. How May | Help You?".) The word error rate for
these utterances is 31.7% and the oracle accuracy, defined as the
accuracy of the path in the lattice closest to the transcription, is
91.7%. Sausages yield about the same word error rate and or-
acle accuracy while being about 100 times smaller than lattices.
We used Mangu et al.’s algorithm to convert |attices into sausages
[16].

In order to evaluate the change in performance due to the
change in classifier, we keep the ASR engine, the SGF features
and other components unchanged.

Figure 1 presents the results using the SVM 12map architec-
ture on 19 call-types. Besides the number of cal-types, another
major difference with the previous section is that we explicitly
train a garbage class called “Others’. Results are presented in
the form of an ROC curve, in which we vary the threshold. The
utterances for which top classifier output is below that threshold
are rejected. The correct classification rate is the ratio of corrects
among the accepted utterances. The false rejection rate is the per-
centage of rejected utterances which were labeled as one of the
non-"Other” call types. Hence, there is atrade-off between correct
classification and false rejection by varying the rejection thresh-
old, and the ultimate aim is to reach a correct classification rate of
100%, and false rejection rate of 0%. Rank-2 curves compute the
performance using the top two classifier outputs. We have found
that these curves give an indication of performance in adialog sys-
tem where we have the opportunity for confirmation and error cor-
rection. The error rate has decreased about 50% relatively on the
rank-2 ROC curve for amost al thresholds. This shows the effec-
tiveness of SVMs for this task. For rank-1, we have managed to
improve the classification accuracy by 4-5% points absol ute.

4. CONCLUSION

Approaches based on probabilistic modeling have been very suc-
cessful in speech and language understanding, and allowed to build
large architectures that are globaly consistent. This works de-
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scribes a first step toward the optimal embedding of binary large
margin classifiersinto such models, and immediately shows signif-
icant improvements in performance. It also suggests strategies to
further optimize the recombination of binary classifiers. Using 1-
vs-1 classifiers (instead of 1-vs-others) would better model the fact
that classes are exclusive. Replacing the hinge lossin SVMs with
better approximations of the logistic loss [8, 13] should be con-
sidered. An explicit probabilistic modeling of the rejection would
allow a better representation of the task.
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