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ABSTRACT

Classification is a key task in spoken-dialog systems. The response
of a spoken-dialog system is often guided by the category assigned
to the speaker’s utterance. Unfortunately, classifiers based on the
one-best transcription of the speech utterances are not satisfactory
because of the high word error rate of conversational speech recog-
nition systems. Since the correct transcription may not be the high-
est ranking one, but often will be represented in the word lattices
output by the recognizer, the classification accuracy can be much
higher if the full lattice is exploited both during training and clas-
sification. In this paper we present the first principled approach
for classification based on full lattices. For this purpose, we use
the Support Vector Machine framework with kernels for lattices.
The lattice kernels we define belong to the general class of ratio-
nal kernels. We give efficient algorithms for computing kernels
for arbitrary lattices and report experiments using the algorithm in
a difficult call-classification task with �� categories. Our experi-
ments with a trigram lattice kernel show a ��� reduction in error
rate at a ��� rejection level.

1. MOTIVATION

One of the key tasks of spoken-dialog systems is classification.
This consists of assigning, out of a finite set, a specific category to
each speech utterance based on the transcription of that utterance
by a speech recognizer. The choice of possible categories depends
on the dialog context considered. A category may correspond to
the type of billing problem in the context of a dialog related to
billing, or to the type of problem raised by the speaker in the con-
text of a hot-line service.

Categories are used to direct the dialog manager in formulat-
ing a response to the speaker’s utterance. Classification is based
on features such as relevant key words or key sequences used by a
machine learning algorithm.

Unfortunately, the word error rate of conversational speech
recognition systems is still too high in many tasks to rely only
on the one-best output of the recognizer. However, the word lat-
tices output by speech recognition systems may contain the correct
transcription in most cases. Thus, it is preferable to use instead the
word lattices for classification.

The application of classification algorithms to word lattices
raises several issues. Even small lattices may contain billions of
paths, thus the algorithms cannot be generalized by simply apply-
ing them to each path of the lattice. Additionally, the paths are
weighted and these weights must be used to guide appropriately
the classification task.

Recently, a general family of kernels based on weighted trans-
ducers or rational relations, rational kernels, was introduced [3].
These kernels apply to lattices or arbitrary weighted automata.
Kernel methods [15] are widely used in statistical learning tech-
niques such as Support Vector Machines (SVMs) [2, 4, 16] due to
their computational efficiency in high-dimensional feature spaces.
Combining rational kernels for lattices with SVMs constitutes
the first principled technique for efficient classification algorithms
based on the full lattice. The use of lattice kernels can be adapted

SEMIRING SET � � � �

Boolean ��� �� � � � �
Probability �� � � � �
Log � � ��	��	� ���� � �	 �
Tropical � � ��	��	� ��	 � �	 �

Table 1. Semiring examples. ���� is defined by: � ���� � 

� ��
���� � ����.

to other problems than classification, such as principle component
analysis [15].

In this paper, we define a simple rational kernel and show
its applications to spoken-dialog classification using SVMs. We
briefly describe the generic method based on general weighted au-
tomata algorithm [3] for computing this kernel. We then give a
more efficient algorithm for the special case of the lattice kernel
considered here. Finally, we apply these kernels to a difficult call-
classification task with �� classes, AT&T How May I Help You
(HMIHY�� ). Our experiments show that lattice kernels reduce
the SVM error rate by more than ��� at the ��� rejection level.
This rejection level is the standard operation point for the task.
Note that this task is different from the easier ��-class task de-
scribed in the paper [6].

2. PRELIMINARIES

In this section, we present the definition and notation necessary to
introduce lattice kernels.

A weighted automaton is a finite automaton in which each
transition carries some weight element of a semiring in addition
to the usual alphabet symbol.

Definition 1 ([7]) A system �� � ���� �� �� is a semiring if:
�� � �� �� is a commutative monoid with identity element �;
�� � �� �� is a monoid with identity element �; � distributes over
�; � is an annihilator for �: for all � 
 � � �� � 
 �� � 
 �.

Thus, a semiring is a ring that may lack negation. Table 1 lists
some familiar examples of semirings. In addition to the Boolean
semiring and the probability semiring used to combine probabil-
ities, two semirings often used in applications are the log semir-
ing which is isomorphic to the probability semiring via a ��

morphism, and the tropical semiring which is derived from the
log semiring using the Viterbi approximation. To shorten the
notation, in the following we will denote the semiring system
�� � ���� �� �� simply by the semiring set � .

Definition 2 A weighted finite-state transducer � over a semiring
� is an 8-tuple � 
 ����� �� �� �� 	� 
� �� where:
� is the finite input alphabet of the transducer; � is the finite
output alphabet; � is a finite set of states; � � � the set of initial
states; � � � the set of final states; 	 � � � �� � ���� �
�� � ���� � � � � a finite set of transitions; 
 � � � � the
initial weight function; and � � � � � the final weight function
mapping � to � .
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Weighted automata can be formally defined in a similar way by
simply omitting the input or output labels.

Given a transition � 
 	, we denote by 
��� its input label,
���� its origin or previous state and ���� its destination state or next
state, ���� its weight, ���� its output label (transducer case). Given
a state � 
 �, we denote by 	��� the set of transitions leaving �.

A path � 
 �� 
 
 
 �� is an element of 	� with consecutive
transitions: ������� 
 �����, 
 
 �� � � � � �. We extend � and �
to paths by setting: ���� 
 ����� and ���� 
 �����. We denote
by � ��� ��� the set of paths from � to �� and by � ��� �� �� ��� the
set of paths from � to �� with input label � 
 �� and output label
� (transducer case). These definitions can be extended to subsets
���� � �, by: � ����� ����� 
 ����� ������ ��� �� �� ���.

The labeling functions 
 (and similarly �) and the weight func-
tion � can also be extended to paths by defining the label of a
path as the concatenation of the labels of its constituent transi-
tions, and the weight of a path as the �-product of the weights
of its constituent transitions: 
��� 
 
���� 
 
 
 
����, ���� 

������
 
 
 ������. We also extend � to any finite set of paths �
by setting: ���� 


�
	������.

The output weight associated by a transducer � to any pair of
input-output string ��� �� is:

��� ����� �� 

�

	�
 �������� �


������������ ������� (1)

with ��� ����� �� 
 � when � ��� �� �� � � 
 �.

3. LATTICE KERNELS

3.1. Kernel Methods

Classification algorithms such as SVMs have primarily been ap-
plied to input vectors � 
 � of fixed length or structure. When
the input vectors are not linearly separable, one forms non-linear
features based on the input features using a mapping � � � � �
such that the images ����, � 
 �, of the input vectors, are linearly
separable in the possibly higher-dimensional feature space � . �
is assumed to be a Hilbert space. Training and classification by
SVMs require the computation of the dot product in � . In many
cases, that dot product may be very costly to compute directly due
to the high dimensionality of the feature space. This problem can
be overcome by using instead a kernel, that is a function � such
that for all �� � in the classification set �:

���� �� 
 �����������

Kernels may often be more efficient to compute because they avoid
the explicit computation of ����. Functions � that ensure that the
SVM optimization problem has a unique solution must satisfy cer-
tain conditions. It can be proved that if � is symmetric, positive,
and definite, then these conditions are satisfied.

Kernels � that meet these conditions can be used to con-
struct other families of kernels meeting these conditions [15].
Polynomial kernels of degree � are formed from the expression
�� � ��
, and Gaussian kernels can be formed as �����������
with ����� �� 
 ���� �� ����� ��� ����� ��.

For our spoken-dialog classification problem we need to de-
fine kernels over word (or phone lattices). Lattice kernels that are
symmetric, positive, and definite will allow us to apply the com-
putationally efficient SVM classification technique directly to the
lattices. Note that the number of linear features that can be con-
structed from a lattice may be very large. If one can construct a
weighted transducer to efficiently compute lattice kernels, this can
result in significant computational savings even in the linearly sep-
arable case.
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c:ε/0
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b:ε/0
c:ε/0

a:ε/0

Fig. 1. Weighted transducer � over the log semiring with � 

��� �� ��. The transition weights and the final weight at state � are
all equal to �.

3.2. Lattice Kernel for Spoken-Dialog Classification

A general family of kernels for weighted automata, rational ker-
nels, was introduced in [3]. The definition of these kernels is based
on weighted finite-state transducers. In this section, we define a
lattice kernel relevant to spoken-dialog classification tasks that be-
longs to the general class of rational kernels.

The basic idea behind the definition of this kernel is that two
utterances are similar when they share many common �-gram se-
quences. The exact transcriptions of the utterances are not avail-
able but we can use the word (or phone) lattices output by the
recognizer. A word lattice � can be viewed as a probability dis-
tribution �� over all strings  
 ��. Denote by � �� the number
of occurrences of a sequence � in the string  . The expected count
or number of occurrences of an �-gram sequence � in  for the
probability distribution �� is:

���� �� 

�
�

��� �� ��

Two lattices output by a speech recognizer can be viewed as simi-
lar when the sum of the product of the expected counts they assign
to their common �-gram sequences is sufficiently high. Thus, we
define an �-gram kernel � for two lattices �� and �� by:

����� ��� 

�
���	�

����� �� ����� ��

It is already clear from this expression that our kernel � is sym-
metric, positive and definite since it is written as a dot product.
The question is whether we can construct a weighted transducer
that efficiently computes �.

Fortunately, there exists a simple weighted transducer over the
log semiring that for any lattice � computes -��
����� ��� for all
�-gram sequences �. Figure 1 shows that transducer in the case
of bigram sequences (� 
 �) and for the alphabet � 
 � 

��� �� ��. More generally, the rational relation corresponding to
the transducer � with input and output alphabet � is:

��� ���������
���� � ��������� �����

and the final weight and the weights of all transitions is �.
For any transducer ! , denote by ���!� the automaton ob-

tained from ! by omitting its input labels. Then, for any �-gram
sequence �, ������� Æ � ������ 
 � ��
������ ���, and similarly
������� Æ � ������ 
 � ��
������ ���. Thus, by definition of
composition [11]:

� ��
������ ���� 
 � ��

��

���	� ����� �� ����� ��
�


 �
�
���

���	�

� ��
������ ���� ��
������ ���


 �
�
���

���	�

������� Æ � ������ � ������� Æ � ������


 �
�
���

�

���� Æ �� Æ ���� Æ ����� �

This proves that � is a rational kernel based on the transducer
� Æ���. Thus, the kernel we define falls within the general frame-
work of SVM optimization [3].

I - 629

➡ ➡



3.3. Kernel Computation Algorithms

The definition of the kernel � suggests a simple algorithm for
its computation based on general weighted automata and graph
algorithms: composition of weighted transducers to compute �� Æ
�� Æ����Æ�� [11, 13], and a general shortest-distance algorithm
to compute the ����-sum of the weights of all the paths of this
machine [10]. The general utilities provided by the FSM library
can be used to compute ����� ��� for lattices �� and �� [12].

Note that the size of the transducer � is "������. In practice,
a lazy implementation simulating the presence of the transitions of
� labeled with all elements of � reduces the size of the machine
used to "���. Since the complexity of composition is quadratic
[11, 13] and since the general shortest distance algorithm just men-
tioned is linear for acyclic graphs such as the lattices output by
speech recognizers, the worst case complexity of the algorithm is:
"��� ���� �����.

In what follows, we present a more efficient algorithm for
computing ����� ��� whose complexity is linear in ���� and ����
for a fixed �: "�� ����� � ������. We first show that � Æ � can
be computed efficiently for any lattice � 
 ��� �� ���� Æ� �� 
� ��
using a general shortest distance algorithm over the log semiring
[10]. For each state � 
 �, denote by ���� the shortest distance
from � to � and by # ��� the shortest distance from � to � :

���� 

�
���

	�
 �����

�
������ � ����� # ��� 

�
���

	�
 ���� �

����� � ��������

The shortest distances ���� and # ��� can be computed for all states
� 
 � in linear time ("�����) since � is an acyclic weighted au-
tomaton [10].

Proposition 1 Let � be a weighted automaton over the log semi-
ring. Then, for any �-gram �, -��
����� ��� can be computed by
taking the����-sum of the weights of all paths � of � labeled with
�, and the shortest distances to the origin and from the destination
state of �:

� ��
����� ��� 

�
���

��	�	�

������ � ���� � # ������

Proof. To emphasize the distributivity of � over ����, we will
use the notation � instead of � in this proof. By definition of
���� ��, -��
����� ��� is the ����-sum of the weights of all the
paths �����
 from � to � with a sub-path �� labeled with �:

-��
����� ��� 

�
���

	�	�	��
 ���� ����	��	�


�����������������������
�������
��

Using the distributivity of � over ���� and the definition of the
shortest-distances, this can be rewritten as:

-��
����� ��� 

�
���

��	��	�

�������� ������ # �������

which proves the proposition.
By proposition 1, -��
����� ��� can be computed in a straight-

forward manner by locating � in each path of � whose label con-
tains �. This can be done with a simple depth-first search of �
augmented in the following way: when a state previously visited
is found, the search must continue from that state but only for paths
of length less or equal to �� �. The worst case complexity of that
search is "������.

For each subpath � found labeled with an �-gram sequence �,
the weight ������ � ���� � # ������ is added to the current total
weight of the sequence �. To store the weight associated to each
sequence, we can maintain a hash table for the sequences � found

0/0

1/0

a

2/0

b

3/1

a

4/2

b

5/1

a

6/2

b

Fig. 2. Tree $ accepting all bigram sequences over the alphabet
��� �� augmented with failure states. Within each circle, the first
number denotes the state number, the second the failure state.

so far or use a tree $ representing all �-gram sequences and store
the weights at its leaves (see figure 2).

Since all operations other than the search are done in constant
time, the total complexity of the computation of all ���� �� for �-
gram sequences � appearing in � using this algorithm is "������.
Only the necessary part of the tree $, that is the part corresponding
to �-gram sequences found in �, needs to be constructed during
the search.

The computation of ����� ��� for two lattices �� and ��

can thus be done in the following way. We first compute
-��
������ ��� for all �-gram sequences of �� and construct just
the part of the tree $ needed. We then use the same tree to store
the expected counts corresponding to �� and keep only those
leaves visited in that search for which ����� �� �
 � and sum
-��
������ ��� and -��
������ ��� for those leaves, which gives
exactly -��
������ ����. This adds only constant time opera-
tions at each node of $ visited in the second search. Thus, the
total complexity of our algorithm for computing ����� ��� is
"������ � ������.

The use of the tree can be made more efficient by using the
notion of failure function as in many efficient string-matching al-
gorithms [1, 9]. Using failure functions, the computation of the
kernel can be done in "�� � ���� � ����� for lattices reduced to
just one path. To each node � of that tree, we associate its failure
node %��� defined as follows. Let & be the unique string reaching
node � from the root of the tree and let ' be the longest suffix of
& that is different from &. Then %��� is the node of the tree ob-
tained by reading ' from the root. The failure nodes are used as
follows. When reading an input string starting from the root node,
the transition labeled with the next symbol is taken if such a tran-
sition exists, otherwise a transition labeled with that symbol from
the failure node of the current node is taken. Failure functions can
also be used to generalize the algorithm to the more general case
of the computation of expected counts for elements of any finite
set ( � ��.

3.4. Linear Lattice Kernels and SVMs

Our lattice kernel � is linear with respect to each of its lattice pa-
rameters. As a consequence, when it is used as the kernel for SVM
classification, support vectors can be combined into a single vector
by taking a linear combination of the support vectors. Indeed, let
��, 
 
 �� � � � � ) , be the support vectors determined by the SVM
classification and let *�, 
 
 �� � � � � ) , be the corresponding mul-
tipliers. More precisely, we can divide ) into two sets )� and
)� corresponding to the positive and negative multipliers. Then,
the SVM classifier assigns the following weight to a lattice �:
�
���

*������ �� 

�
����

�*������� ���
�
����

�*������� ��


 ����� �������� ��, where

�� 

�
���

����

�� ��
 �*��� ��� and �� 

�
���

����

�� ��
 �*��� ���

This reduces the number of kernel computations during classifica-
tion from ) to just two. The price to pay is the size of the lattices
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Fig. 3. Comparison of SVMs trained with trigram kernel applied
to the lattice versus Boostexter, an otherwise superior classifier of
similar tasks to the HMIHY system.

�� and �� which are typically larger than any of the support lat-
tices ��. But, �� and �� can be optimized off-line using deter-
minization and minimization of weighted automata [8]. In prac-
tice, this can significantly speed up classification when the linear
kernel � is used directly.

Linear lattice classifiers also offer an efficient alternative to a
common approach taken in spoken language recognition, which
consists of applying the classifier to each of the N-best recognized
sentences and to define as the voted output a weighted average
of each classifier output. When the kernel is linear, a weighted
average of the N-best classifications is nothing but a poor and in-
efficient approximation to the lattice kernel classification.

4. EXPERIMENTAL RESULTS

We used the AT&T FSM Library [12] for the implementation of
our lattice kernel and incorporated our algorithm in a general learn-
ing library for large-margin classification, LLAMA, [6]. LLAMA
offers an optimal multi-class recombination of binary SVMs where
kernels are optimized separately for each class.

We used the lattice kernel defined in the previous section for
call-classification in the spoken language understanding (SLU)
component of the AT&T How May I Help You (HMIHY�� ) nat-
ural dialog system. In this system, users ask questions about their
bill, calling plans, etc. The utterances are the responses to the first
greeting: “Hello, This is AT&T. How May I Help You?”. The word
error rate for these utterances with the current recognition system
is 28.7% and the oracle accuracy, defined as the accuracy of the
path in the lattice closest to the transcription, is 91.7%.

Within the SLU component, the objective is to classify the in-
put telephone call into one of 38 classes (call-types and named
entities), such as Billing Credit, or Calling Plans [5]. Each utter-
ance may be assigned to several classes and it is considered to be
an error if the highest scoring class is not one of these labels. In
our experiments, we used 7,449 utterances as our training data and
2,228 utterances as our test data. The feature space corresponding
to our lattice kernel is that of all possible trigrams over a vocab-
ulary of 5,405 words. Training required just a few minutes on a
single processor of a 1GHz Intel Pentium processor linux cluster
with 2GB of memory and 256 KB cache.

Utterances that score lower than a given confidence level are
rejected. We present our results in the form of a plot of the
classification error as a function of the rejection rate. Figure 3
shows the result of the use of the trigram kernel enhanced with
a �-degree polynomial. In comparison to Boostexter, that other-
wise has demonstrated superior performance on similar tasks to
the HMIHY system [14], the lattice kernel brings a significant re-

duction of the one-error rate from ����� to ����� at a rejection
level of ���, a typical operation point for the task. The plot also
demonstrates how the �-best solution is clearly out-performed by
the full lattice kernel solution (Poly1 SVM on 1-best versus Poly1
SVM on Lattice), and how a �-degree polynomial applied to the
lattice kernel further reduces the classification error (Poly1 SVM
on Lattice versus Poly2 SVM on Lattice).

Note that combining an �-gram kernel with a polynomial of
degree �, corresponds to SVM-classification using features of un-
ordered gappy � � �-grams. It is a topic for further research
to determine the relationship between performance obtained from
SVMs using true gappy �-grams and polynomial enhancements of
lower order �-grams.

5. CONCLUSION

We presented a principled approach to classification based on full
lattices output by a recognizer. We introduced a general kernel for
speech recognition lattices and efficient algorithms for its compu-
tation. Experimental results in a large and difficult spoken-dialog
classification task using these kernels demonstrated their practical-
ity and effectiveness.

The lattice kernel presented belongs to the general class of ra-
tional kernels [3]. More complex rational lattice kernels can be de-
fined and computed using general weighted automata algorithms.
Such kernels are likely to further improve the classification accu-
racy of spoken-dialog systems.
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