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ABSTRACT

Call-routing is a technology that attempts to route automatically
a telephone query from a customer to one of a number of des-
tinations. In vector-based call-routing, a query is represented in a
high-dimensional vector space whose axes correspond to words, or
sequences of words, that appear in the vocabulary used by callers.
In this paper, we examine three different discriminative techniques
applied to call-routing. Although some of these techniques give
very substantial reductions in error-rate on the training-set, perfor-
mance on the test-set is disappointing, the most likely reason being
a lack of generalisation. Using examples of mis-classified calls,
we speculate on why this might occur and propose an improved
approach.

1. INTRODUCTION

“Call routing” refers to the technique of automatically relaying a
customer’s telephone enquiry to the appropriate destination, using
computational speech and language processing techniques. The
potential benefits of such a technology are obvious to anyone who
has used the slow and frustrating systems which are currently uni-
versally provided when one telephones a company, institution,
government department etc. The user responds to prompts from
these systems using touch-tones, but the menus are rigid and it
may require navigation through several levels of menu to reach the
destination appropriate to the query.
In a call routing system, the prompt to the customer is deliberately
general (e.g. “Please state your query or request”, or “Please say
which service you would like”). In contrast to the typical “Please
say yes or no” prompts encountered in current voice dialogue sys-
tems, this prompt elicits a wide range of responses. These re-
sponses can be very different in length, ranging from single words
(e.g. “Mortgages”) to long responses that may be syntactically
and semantically complex or ambiguous, and that may incorporate
a large vocabulary (e.g. “There’s a transaction on my account that
isn’t my charge so I need to talk to somebody about getting this
removed”). However, the task is made feasible by the fact that the
number of possible “destinations” for a call is usually quite low
(� 40) and most calls can be unambiguously routed to a single
destination.
In this paper, we consider the vector-based approach to call rout-
ing. The vector-based approach represents a spoken query as a
vector within a high-dimensional vector space whose axes corre-
spond to words, or sequences of words, that appear in the vocabu-
lary used by callers. Standard pattern processing techniques may
then be used to classify the query and hence route it to its correct
destination. This approach is an alternative to the probabilistic ap-
proach, in which the likelihood of the set of query words being
associated with a particular destination is estimated, and statistical
techniques used to decide the significance of this likelihood [7].

Chu Carroll and Carpenter have shown that the vector based tech-
nique offers superior performance on a call-routing problem with
23 destinations [2].
This paper is organised as follows: in section 2, we describe the
problem studied here and the data-set used. We also describe the
approach to classification taken in the paper and the details of the
construction of a baseline classifier. Section 3 describes in detail
the discriminative algorithms that were investigated in this work,
and section 4 reports results on both the training and development
sets. Section 5 concludes with a brief discussion and some pointers
to how progress might be made in this technology.

2. DATA AND BASELINE CLASSIFIER

2.1. Data
The application studied here was the enquiry-point for the store-
card for a large retail store. Customers were invited to call up the
system and to make the kind of enquiry they would normally make
when talking to an operator. Their calls were routed to 61 different
destinations, but some destinations were used very infrequently.
95% of the calls were routed to the top 35 routes, and these were
the calls used in this study. Each call was transcribed and labelled
by an expert with the appropriate destination (e.g. “I need my ac-
count balance, please” would be routed to Balance, “My card was
stolen” to LostCard etc.). The transcriptions were divided into a
training-set of 6674 queries and a development set of 4713 queries.
In fact only 4642 of the training-set queries consisted of a unique
set of words, and it was this reduced set that was used for training
the algorithms. Note that the experiments reported here used only
these transcriptions; no speech recogniser output was used at this
stage.

2.2. Classifier
To construct the classifier, the training-set transcriptions and their
associated labels were used to construct a matrix W . The rows
of W are called the “terms”, and correspond to different single
words or sequences of words that appear in the transcriptions. The
columns of W correspond to the different destinations. Entry Wi j
is the number of times that term ti appears in destination rj in the
training-data. W is then transformed into a new matrix X which
is in turn used to classify a query whose destination is unknown.
X always has the same number of columns as W (= the number of
different destinations), but may have fewer rows (see section 3).
To classify a query whose destination is unknown, the query’s tran-
scription is first represented as an additional column vector of W .
This extended matrix W � is appropriately transformed to an ex-
tended matrix X �, and the additional column vector of X� is then
classified by comparing it with the other column vectors of X�.
Two different techniques were used to classify the query vector q:

1. Dot-product: Classify q as destination r�, where r� max-
imises xk � q, k � 1�2� � � � �Nroutes. (xk is the k’th column
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vector of X and � means “scalar product”).

2. Euclidean difference: Classify q as destination r�, where r�

minimises �xk�q��xk�q�T , k � 1�2� � � � �Nroutes.

This paper concentrates on exploring different discriminative
transformations of W � X with the aim of achieving the best clas-
sification accuracy of unseen queries. The matrix of counts, W ,
is a poor discriminator of the destinations, because the magnitude
of the count of a term is only weakly related to the importance
of the term for identifying the correct destination. The highest
counts in any of the columns of W are mostly due to terms repre-
senting function words such as “a”, “the”, “of”, “and” etc., words
which convey no information about the destination. This problem
has been long appreciated in the field of information retrieval, and
various weighting schemes for W (which we can regard as trans-
formations) have been proposed to improve discrimination.
For the baseline classifier, the transformation W � X consisted of
a weighting of the elements of W . This weighting is due to Bel-
legarda [1] and has been found previously to perform well [4]—
details are given in either of these papers. The baseline classifier
used this weighting together with the dot-product classifier.

2.3. Term generation
One approach to generating the set of terms to be used in W is to
make a “stop-list” of words that do not contribute to identification
of any destination and to delete these words from the transcrip-
tions before constructing W . A simple way of generating such a
stop-list (used in [5]) is to measure the mutual information (MI)
between each word and the destinations and to place on the stop-
list any word with a value of MI lower than some threshold. The
stop-list has the effect of reducing a phrase such as “what is the
balance on my account” to something like “balance account”. A
disadvantage of using a stop-list is that it is then impossible to
make use of collocations, word sequences that can be regarded as
operating as single words. Collocations are commonly effective
compound nouns such as “account balance”, “available credit”, or
phrases such as “i’d like to”, “my card was stolen”. Collocations
contain information useful for routing purposes which is lost when
words are removed using a stop-list. For instance, the query “did
you get my check” might be reduced to just “check” by using a
stop-list, since the four preceding words are very common. How-
ever, although the individual words “did”, “you” and “get” have
low information content, the collocation “did you get” is highly
correlated with the destination lastpayment and so it is useful to
retain it.
In this work, no stop-list was used, and terms consisted of all the
different single words in the vocabulary plus selected collocations.
Collocations were selected experimentally by measuring the rout-
ing accuracy when different terms were used. The identity of the
terms was varied by varying the maximum number of words in
a sequence of words comprising a term from two words to six
words. Hence if this maximum were set to three, the query “i want
a new credit card” would yield the terms “i”, “i want”, “i want a”,
“want”, “want a”, “want a new” etc. etc. We also varied the num-
ber of times that a sequence had to be seen in the training data be-
fore it was used as a term. The result was that the best performance
was obtained when the number of words in a sequence comprising
a term was a maximum (six) and the number of times above which
a sequence is regarded as a term is a minimum (twice). However,
applying these two criteria leads to an explosion in the number
of terms in the training-data. There are 1494 different words in
the training data, but if the above criteria are applied, the result

is 17875 different terms, which is too high to use practically as a
vector dimensionality. As a comprise, our terms included colloca-
tions of up to three words which occurred three times or more in
the training data, which results in 6089 terms and only a small in-
crease in error. However, in some experiments, collocations were
not used, so that the number of terms was 1494 (the minimum
number if no stop-list is used).

3. DISCRIMINATIVE TECHNIQUES

The entropy weighting described in [1] can be viewed as a simple
discriminative weighting. Many different weighting schemes have
been proposed and tested to optimise information retrieval from
both documents or speech recognition output. Initially, we pro-
posed and tested several new ad hoc weightings that we reasoned
should be an improvement over the weighting of [1]. However,
performance was generally similar to or worse than baseline, and
it was clear that an automatic and principled way of improving
discrimination performance was desirable. In this section, we de-
scribe three techniques that were developed and evaluated for this
task:

1. Generalised Probabilistic Descent (GPD)

2. Corrective Training (CT)

3. Linear Discriminant Analysis (LDA)

4. LDA followed by CT

We now describe these techniques in detail.

3.1. Generalised Probabilistic Descent (GPD)
In [8], Kuo and Lee described a discriminative technique for
vector-based call-routing which is based on probabilistic descent.
As in this work, destination classification in their work is based on
taking the dot-product between an input test vector and the column
vectors of a matrix X , each column vector corresponding to a dif-
ferent destination, and finding the maximum. The algorithm seeks
to adapt the elements of X in such a way as to minimise the term
dk � Gk�gk, where gk is the dot-product of the test vector x to the
correct class and Gk is a function of the sum of the dot-products
of x with column vectors of the incorrect classes. Minimisation
is accomplished by forming a smooth function of dk , Lk, using a
sigmoid, differentiating Lk with respect to the elements of X , and
then updating these elements using a gradient descent algorithm.
Full details of the algorithm are given in [8].
Kuo and Lee’s algorithm was implemented as described in their
paper. The only difference was in the pre-processing, where we
used the weighting described in [1] rather than the inverse docu-
ment frequency weighting used in [8]. The reduced (unduplicated)
training-set was used to form the baseline classifier and also pro-
vided the test vector utterances for adapting the weights of the ma-
trix X . Because of the computational intensity of this algorithm,
the terms consisted of the 1494 different words with no colloca-
tions used. The algorithm parameters used were similar to the ones
used in Kuo and Lee’s experiments. Iteration on the training-set
was carried out until no further improvement in the error-rate was
available (see Figure 1).

3.2. Corrective Training(CT)
Nilsson described a simple procedure for adaptation of a classifier
for a multi-class problem [9]. The algorithm is as follows:

Iterate over training-set vectors:
If test vector vi has destination r j but

is mis-classified as rk:
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x j � x j � ε�vi� x j�
xk � xk � ε�vi � xk�

Else if classification correct:
Do nothing.

where x j is the column vector representing the true class and ε a
positive constant. In other words, when a mis-classification oc-
curs, the algorithm moves the vector representing the true class
closer to the input vector, and the vector representing the recog-
nised class further away. Clearly, the choice of ε is important;
intuitively, if the test vector is much closer to the recognised class
than the true class, the amount of movement should be more than
if the distances are more equal. We used an empirical value of
ε given by ε � α��vi � xk���vi � x j��

η . where α is a small positive
constant. This gives a value of ε that has a minimum value which
is greater than α, and that increases as the mis-classification gets
“worse” in the sense that the ratio �vi � xk���vi � x j� increases. Ex-
perimentation with different values of η showed that values greater
than one tended to make the adaptation process unstable. Adapta-
tion of the columns of X was done in “batch” mode: during an
iteration in which the training-set vectors were classified, the val-
ues of x j�xk�vi and ε were stored for each mis-classification and
then used to adapt X at the end of the iteration. Prior to iterat-
ing the algorithm, both the input vectors and the column vectors
of X were normalised to unit vectors, and after each iteration, the
column vectors were re-normalised. α was decreased on each it-
eration by 5%. Iteration was performed until the error-rate on the
training-set appeared to be fluctuating about a low value: typically,
one hundred iterations were used (see Figure 1).

3.3. Linear Discriminant Analysis (LDA)

Linear Discriminant Analysis (LDA) [10] is a discriminative clas-
sification technique that is implemented by applying a linear trans-
formation to the training and query vectors prior to classification.
LDA has the attractive features of making no assumptions about
the distribution of the vectors and of reducing the dimensional-
ity of the space to N � 1, where N is the number of classes. In
this problem, it therefore reduces the dimensionality from 6089
(or 1494 if no collocations are used) to 34.

The transformation matrix A is the matrix of eigenvectors ai that
satisfy the equation

S�1
W SBai � λai� (1)

where SW is the within-class scatter matrix, SB the between-classscatter matrix and λ an eigenvalue. However, SW is singular in our
application and so we cannot compute S�1

W directly. Instead, we
compute A as

A � UrΛΛΛ
�1�2
r Vr� (2)

where Ur � �u1�u2� � � � �ur� is the matrix of eigenvectors of SW
with non-zero eigenvalues, ΛΛΛr is a diagonal matrix of non-
zero eigenvalues of SW and Vr is the matrix of eigenvectors of

S�B �ΛΛΛ�1�2
r UT

r SBUrΛΛΛ
�1�2
r . Note that SW is constructed directly

from the 6674 vectors of counts of terms and no weighting is ap-
plied to these vectors prior to LDA. Note also that since LDA is
based on a maximisation of a Euclidean distance between trans-
formed vectors, we use the Euclidean distance between the (trans-
formed) query vector and the refence column-vector rather than
the dot-product for classification.

We also experimented with applying CT to the transformed vectors
generated by LDA.
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Fig. 1. Error-rates on the training-set

4. RESULTS
4.1. Training-set
Three of the algorithms investigated (GPD, CT and LDA+CT) re-
quire iteration to produce the classifier, and the error-rate on the
training-set during iteration was measured. Results are shown in
Figure 1. Figure 1 also shows the baseline error on the training-set
(14.12%) and the error after application of LDA (5.30%). Note
that the GPD algorithm starts from a higher baseline error than CT
because it was run with single words as terms rather than three-
word collocations. The algorithms were iterated 100 times. Af-
ter this, no further consistent improvement in classification perfor-
mance was observed.

4.2. Development-set
Results on the development-set are presented in Table 1 and com-
pared with results from the training-set when iteration was com-
plete. We also tested whether the result obtained by each technique
was significantly better than the baseline result using the statisti-
cal test described in [6] and the result of this test is given in the
final column of Table 1. Table 1 shows a striking difference in

% error on Result on
Technique Training-set Development-set dev-set

(4642 calls) (4713 calls) significant?
Baseline 14.12 14.60

GPD 4.67 12.08 Yes (p � 0�0001)
CT 7.02 12.63 Yes (p � 0�0001)

LDA 5.30 14.15 No
LDA+CT 4.00 13.52 Yes (p � 0�02)

Table 1. Error rates on the training and development sets

performance on the training-set and test-sets. All the algorithms
give very large reductions (72% for LDA+CT) in the error-rate on
the training-set, but the best (relative) reduction in error-rate on the
development-set was 14.4%, obtained by GPD, although three of
the algorithms gave a performance gain that is statistically signifi-
cant when compared with the baseline. This is an effect that might
occur with small data-sets that are not-well matched in their con-
tent, but these two sets are large, randomly chosen from a single
set, and the baseline classifier error-rate is approximately equal on
both sets. The difference in performance is most likely to be due to
a failure of the algorithms to generalise from training- to test-set.
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4.3. Confidence Measures
Confidence measures [3] have found extensive use in speech
recognition where they are useful for e.g. improving the efficiency
of a speech dialogue/understanding system by requesting confir-
mation or re-input of uncertain words, for detection of out-of vo-
cabulary words, to aid unsupervised speaker adaptation etc. They
are also useful in call-routing systems, where they can be used
to detect whether a call is likely to have been routed correctly or
whether human intervention may be required to correct a possible
error.
A simple confidence measure (CM) designed to predict whether
the “top-choice” destination for the i’th call vi is likely to be cor-
rect, is Ci � S1

i �S2
i , where S1

i is the recognition “score” of the top
choice class and S2

i the score of the second choice class. When
the dot-product is used, Ci � 1 and when the Euclidean distance
is used, Ci � 1. In Figure 2, we compare the performance of a
CM derived from the baseline classifier with a CM derived from
the LDA classifier. A call is classified as “correctly routed” when
Ci � T , where T is a variable threshold. The y-axis is the percent-
age of calls in the development set that were classed as “correctly-
routed” using the CM and the x-axis is the percentage of these calls
that were actually in error. The superiority of the LDA-derived
CM over the baseline CM is clear: using the LDA CM, the routing
classification error is only about 1% when 50% of the data is clas-
sified as “correctly routed”. Put another way, when a call produces
a value of Ci � T , which happens on about 50% of occasions, we
can be 99% certain that it has been correctly routed.

5. DISCUSSION

A vector approach to call-routing has been shown to be an effective
method by many researchers, and we have argued that a discrim-
inative approach is attractive for this application. Three discrimi-
native techniques have been investigated here. All the techniques
produced very large reductions in the error-rate on the training-set
but did not generalise well to the test-set—the best result (using
GPD) produced an absolute error-rate reduction of 2.5% in a base-
line error of 14.6%. However, a simple confidence measure de-
signed to predict whether the call would be correctly routed was
greatly improved by using a discriminative technique.
A considerable number of mis-classifications are due to inherent
ambiguity in the query, which means it cannot be routed by an
expert to a single destination. There are also some destinations

that are so similar to each other that there is some doubt as to the
consistency of the expert routing provided (e.g.LostCard and Re-
placementCard). However, an examination of some of the errors
reveals that there are linguistical reasons for many of them that
are unlikely to be solved by improved generalisation of the current
technique. Consider, for example the query “i’d like to purchase a
refrigerator for six hundred dollars and i needed to know if i can
put that on my card”. The caller clearly requires to know his credit
limit, but this is not explicitly stated and must be inferred. Or con-
sider the query “i would like my account balance due on a different
date”. This is a request to change a date, and so should be routed
to Misc, but was routed to Balance because of the presence of the
words “account balance”. Another frequent error occurs when the
system does not appreciate that the utterance consists of multiple
different queries and/or requests and simply assigns it to the single
most likely destination. These examples suggest that a linguistic
analysis of the utterance is essential. A preliminary step may be to
classify queries into “straightforward” and “difficult” so that ap-
propriate analysis may be given to more difficult ones. This would
require a confidence measure that could detect ambiguity of the
sort displayed in the queries above.
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