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ABSTRACT

In previous work we showed that state-of-the-art end-of-utterance
detection (as used, for example, in dialog systems) can be im-
proved significantly by making use of prosodic and/or language
models that predict utterance endpoints, based on word and align-
ment output from a speech recognizer. However, using a recog-
nizer in endpointing might not be practical in certain applications.
In this paper we demonstrate that the improvements due to the
prosodic knowledge can be realized largely without alignment in-
formation, i.e., without requiring a speech recognizer. A prosodic
end-of-utterance detector using only speech/nonspeech detection
output is still considerably more accurate and has lower latency
than a baseline system based on pause-length thresholding.

1. INTRODUCTION

Every human-machine dialog system must be able to detect when
a user has finished speaking and is waiting for an answer from
the system. This task is referred to as “end-of-utterance (EOU)
detection”. Current systems rely only on a “pause threshold” for
making this decision [1]. A related task is that of detecting the
pauses, or nonspeech regions. In this work, as in our previous
work in [2], we assume that good detection of nonspeech regions
is given (by some state-of-the-art method), and focus our attention
solely on the EOU detection algorithm itself.

As we demonstrated in [2], current systems are suboptimal and
can be significantly improved by the use of prosodic and language
model cues. In that work, we use a state-of-the-art recognition
system to obtain the speech and nonspeech regions and the word
hypotheses with their corresponding phone alignments. Using the
alignments and the acoustic signal we compute a set of prosodic
features, and model them by using decision trees. The trees yield a
posterior probability estimate for the presence of an EOU for each
location that combines with the probability given by a language
model to produce a score. That score is compared with a chosen
threshold to make the final decision on whether or not that location
is an EOU. We compare the performance of our system with that of
a “baseline” system that uses only pause duration for its decision.

In this paper we introduce further improvements to that sys-
tem, and focus on prosodic EOU detection in a scenario where
speech recognition output is not available at the endpointing stage,
as might be the case in real-time or resource-constrained applica-
tions. As we will show, ASR-independent prosodic EOU detection
is still much better than the baseline system, although it has some
degradation with respect to the ASR-dependent system which uses
the alignment and word output from a speech recognizer.

2. SYSTEM DESCRIPTION

After each pause in the speech input, there is always a possible
EOU. Our approach is to first detect pauses by using either the
alignments output by the recognizer or a pause detector and then
to use prosody and grammar information (when available) to ob-
tain a score that measures the probability of that pause being an
EOU. The final decision is obtained by comparing that score with
a chosen threshold.

As a baseline against which to evaluate our system we use
the method employed by current speech dialog systems, which is
based only on the duration of the pause in the current boundary. If
that pause duration is bigger than a certain threshold (typically in
the range of 0.5 to 1 second) the system decides that the EOU has
been reached.

Our proposed system (Figure 2), in contrast, makes an EOU
decision at various points after a pause has been detected. It does
so by computing a set of prosodic features whose extraction is
based mainly on the acoustic signal. If a recognizer is used at the
first step, more features can be computed using the word and phone
alignments. These features become an input to a decision tree clas-
sifier that estimates the posterior probability that the speaker is
done with the utterance at that location. As the pause gets longer,
the system continuously queries new classifiers (the need for dif-
ferent classifiers depending on the current pause length will be
explained in section 2.4). In practice, we limit these queries to
a finite set of waiting times, called decision points (DPs), to re-
duce computation. When the resulting posterior probability at any
DP exceeds a threshold or a maximum pause duration is reached,
the system outputs the decision that an EOU was found. Figure 1
shows the location of the DPs and the pause threshold in relation
to the pause.

If the recognizer output is available, the stream of hypothe-
sized words can also be used to obtain a language model posterior
probability to combine with the prosodic model probability. The
resulting combined score is then compared with the threshold to
obtain the decision.

2.1. Prosodic model decision trees

As in prior work on disfluency and sentence boundary detection
[3], we trained CART-style decision trees to predict EOUs from
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Fig. 1. Decision points (DP � ) and pause threshold (PT).
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Fig. 2. Diagram of the proposed system. Each time the recognizer or the pause detector finds a pause longer than the first decision point (DP� ), the prosodic
features are computed and a score is obtained using a smoothed version of the decision tree posterior for that DP � and, if recognition output is available, the
LM posterior. If that score is lower than the score threshold, the system waits for a new DP to be reached. The same features are then used to compute a new
score, using the tree for the new DP. The process repeats until the score for a DP exceeds the score threshold, the pause duration is greater than the pause
threshold, or the pause ends (i.e., the speaker resumes speaking).

automatically extracted prosodic characteristics around the point
of interest. In this case, because we are interested in online de-
tection, we use only those features that can be extracted from the
signal before the current DP time is reached.

Two main types of prosodic features can be computed based
on duration and pitch (fundamental frequency, or F0). As seen
in Figure 2, these features are computed only for points at which
the recognizer or the pause detector finds a pause (i.e., only at
interword pauses at least 30 ms long, the minimum duration of our
recognizer’s pause model).

Most of the duration features are extracted from the time align-
ments that the recognizer outputs, for example, the duration of the
last rhyme (i.e., the time from the last vowel in the word to the end
of the word) in the word before the pause. This features can be
normalized in different ways by using the phone duration statis-
tics, speaker-specific duration statistics, and so on. Other duration
features can be computed without the need of time alignments, for
example, the time from the start of the last voiced region to the
current pause.

To obtain F0 features, pitch tracks are extracted from the signal
and then post-processedusing an improved version of the approach
in [4]. Pitch contours are “stylized,” octave errors are estimated,
and, most important, a set of speaker-specific pitch range param-
eters is computed. These parameters include a value that allows
us to estimate a speaker’s “floor” or lowest typical F0 value. The
pitch features are computed using the stylized pitch and those pa-
rameters. For some of these features, the time alignments obtained
by the recognizer are also used for the computation; for the rest, a
fixed time window is used instead. An example of a pitch feature
is the distance from the average pitch in the last word before the
boundary to the speaker’s floor pitch.

Finally, a tree is trained for each DP, using all boundaries with
a pause duration longer than that DP. Thus the first tree includes
every sample with pause duration beyond the first DP; the second
tree uses a subset of the previous samples, and so on. As a result,
the classifiers for later DPs are trained using less data than those
for earlier DPs, and are expected to be less robust. Therefore, we
use the following recursive linear interpolation rule to smooth the
later classifiers:
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is the probability given by the tree for decision

point DP � ,
 

is the weight of the current tree relative to all the pre-
vious trees, and
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is the resulting prosodic model score

for decision point DP � .

2.2. Language model

When an automatic speech recognition (ASR) system is used for
pause detection, the hypothesized words are available to the sys-
tem and a language model (LM) can be used to estimate a posterior
probability of EOU given those words. For this work, an EOU / -
gram LM is trained using transcripts, where the ends of sentences
are marked with a special tag. In this way, the 0 end of sentence

�
tag will be learned as more likely after certain sequences of words
than after others. For each pause found, the probability of EOU
is obtained as the conditional probability of 0 end of sentence

�
given the previous / %1�

words.

2.3. Knowledge source combination

To make use of both prosodic and lexical information, we compute
a simple log-linear interpolation of the LM and the prosodic model
posterior probability:
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where
� 7 �

is the a posteriori probability for EOU given by the
LM,

� 
���
���
����
is the smoothed probability given by the prosodic

model, and 9 is a combination weight that is empirically optimized
using held-out data. The score

2�3 #54 �
�
(

is then compared with the
score threshold for each applicable DP � as shown in Figure 2.

2.4. Rationale for the Method

There are two motivations for using different trees for each deci-
sion point. First, the prior probability and, hence, the posterior
probability for an EOU are highly dependent on the pause du-
ration. Second, some features can be better cues at some dura-
tion lengths than at others. The duration of the last rhyme in the
word before the pause is an example of this kind of feature. Be-
fore a pause, the last rhyme in a word is lengthened. Hesitation
boundaries followed by pauses show even more lengthening than
do EOU boundaries, making the duration of the last rhyme in the
word a useful feature for discriminating the two cases. Even more,
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Fig. 3. Left: Average duration of the last rhyme in the word (nor-
malized by the phone statistics and by the number of phones in
the rhyme) as a function of the minimum pause duration after the
word. Right: tree usage of that feature as a function of the decision
point.

this lengthening is related to the length of the pause, as shown in
Figure 3 (left) where all the samples with a minimum pause dura-
tion value are used to compute the average normalized duration of
the last rhyme in the word.

Training a new tree for each decision point allows each tree
to use the best set of features to do the classification for the cor-
responding minimum pause duration. As Figure 3 (right) shows,
the trees choose to use the normalized last rhyme duration feature
more for later DPs than for earlier DPs, which indicates that at
longer pause durations that feature is a stronger cue to EOU detec-
tion than at shorter pause durations.

3. EXPERIMENTS

3.1. Methodology

As in our previous work, we tested our approach on the ATIS (Air
Travel Information System) corpus [5]. Very few utterances in the
database contain more than one sentence (fewer than 1%). We
eliminated those utterances from our experiments and also those
that contained unfinished sentences, keeping only the utterances
having exactly one complete sentence. We split the corpus in three
subsets: training set (12,486 utterances), development set (3356
utterances), and test set (1976 utterances).

The experiments used the SRI DecipherTM recognition engine
with acoustic models trained for the December 1994 ATIS evalua-
tion [6]. The recognizer LM was trained using the transcription of
the training and development sets, representing a total of 164,000
words (we can include the development set here because we use
the recognizer only on the test set, performing force alignments on
the other two sets). The EOU LM was trained using only the tran-
scriptions for the training set (126,000 words). Both models made
use of hand-defined, task-specific word classes for airline names,
cities, and so on, to improve generalization.

We generated forced alignments for the training and develop-
ment sets, and derived an extensive set of prosodic features from
the resulting phone-level time alignments and the acoustic sig-
nal. Two different systems were evaluated: one using ASR out-
put and one without. For the ASR-independent system we used
only those prosodic features that can be computed without requir-
ing time alignments. In practice, this subset of features could be
computed using a pause (nonspeech) detector.

Decision trees were trained for each system by using the cor-
responding set of features. We used the training set for tree induc-
tion and the development set for choosing the best set of features

for each DP, via an automatic feature subset selection wrapper [3].
The development set was also used to optimize the weights 9 and 

, and to find the optimal pause threshold.
For expediency, in testing we ran recognition on the full utter-

ance waveforms, and then used the 1-best recognition output up to
each decision point as the input to our EOU detector. Prosodic fea-
tures were based on recognition outputs rather than forced align-
ments, but were otherwise computed as in training. To test our
systems, we set decision points at 30, 60, 90, 150, 250, 500, and
800 ms into a pause.

The overall accuracy of the recognizer on the test set was a
word error rate of 5.9%. This represents an idealization, as in real-
istic applications the decision would have to be based on the partial
recognition output at the DP, that is, without the benefit of search
over complete sentence hypotheses. We would therefore expect
the actual recognition accuracy to be somewhat worse, affecting
the performance of the ASR-dependent system, but not that of the
ASR-independent system.

Our proposed EOU detection system was compared to a base-
line system. The baseline system classifies a boundary as an EOU
whenever the pause duration for that boundary is greater than a
given pause threshold.

3.2. Results

For the purpose of the experiment we assume that speakers wait
indefinitely for the system to respond, i.e., the pause duration at
an EOU is infinite. This means that any EOU detector with fi-
nite pause threshold will have 100% recall rate1 . Consequently,
we evaluate how well systems trade off false detection of EOUs
against the time it takes to detect them. Specifically, the two perfor-
mance measures of interest are the false alarm rate (FAR), which
is the percentage of non-EOU boundaries classified as EOU, and
the speaker waiting time (SWT), which is the time between the
last frame of speech and the frame at which the EOU is detected
(this is the time the speaker would have to wait to obtain an answer
from the system if the processing time for the answer itself were
zero). The two measures are inversely related: to reduce the SWT
we can accept a bigger FAR and vice versa.

Figure 4 shows FAR versus SWT for the following four sys-
tems: baseline, prosody-only with the complete set of features (in-
cluding those dependent on ASR), LM only, and combined system.
The prosody-only system uses the smoothed probabilities in Equa-
tion 1 as the score, while the combined system uses the combined
score from Equation 2. The LM-only system is implemented by
replacing

��
���
���
����
in Equation 2 with the prior probability of

EOU for that DP. This approach represents an improvement over
our previous system [2], which used the LM posteriors alone.

For the baseline, the curve is obtained by varying the pause
threshold, while for the other systems the curve is obtained by
varying the score threshold and keeping the pause threshold at 1.8
seconds, which is the best value for the range of FAR between 2%
and 13% for the combined system. Larger pause thresholds could
be chosen if the FARs of interest were below 2%, but this would

1In the work presented in [2] we erroneously considered the pause
length at the end of each utterance as the time the speaker would wait for
the system to answer. This new assumption of an “infinite” pause is not
completely realistic either (few users would wait 30 seconds for a system
to answer), but as all of the presented systems always respond before 2
seconds in the usable range of false alarm rates we consider it a reasonable
assumption.
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Fig. 4. SWT vs. FAR for the four systems: baseline, prosody-only
with ASR, LM-only, and combined system.

hurt the performance for higher FARs. The values of 9 and
 

were
optimized for the combined system for that pause threshold using
the development set, obtaining 9 �������

and
 �������

. The opti-
mized performance measure was the average SWT over the range
of FAR shown in Figure 4.

For the proposed systems every hesitation boundary with a
pause longer than 1.8 seconds is inevitably recognized as an EOU,
regardless of the scores obtained at the DPs. As a consequence of
this, these systems have a minimum FAR (left edge in the graph)
that is obtained when the score threshold is set to 1 (its maximum
value) and which is given by the number of hesitations with pause
duration longer than the pause threshold. At this point the four
systems coincide, although this is not the last point for the baseline
system which reaches 0% FAR when the pause threshold is bigger
than the longest hesitation. The curves also meet at the right edge
of the graph, reflecting the case where the score threshold for the
proposed systems and the pause threshold for the baseline system
tend toward zero, classifying all pauses as EOUs. (The minimum
pause threshold for the baseline system is 30 ms, the minimum
detectable pause length).

Clearly, at all shown operating points, all proposed systems
consistently outperform the baseline system.

3.3. Results for an ASR-independent system

The following results were obtained using only the subset of the
prosodic features that can be extracted without the use of the time
alignments given by the ASR system. In this case, we assume
that an ASR system is not available, which also precludes using an
EOU LM, or a combined lexical/prosodic classifier.

Figure 5 shows FAR versus SWT for the baseline system, the
ASR-independent system, and the ASR-dependent prosody-only
system again, for comparison. The optimized pause threshold for
both prosody-only systems was 1.6 seconds. From the figure we
see that prosody-only performance using the restricted set of fea-
tures degrades somewhat, but is still considerably better than the
baseline.

4. CONCLUSIONS

We have shown two new approaches for the online detection of
ends of utterances. The first one uses ASR output to obtain a
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Fig. 5. Comparison of the SWT vs. FAR graphs for two prosody-
only systems, one that uses the ASR output and one that does not.

prosodic model and a language model that are then combined to
improve system performance. The second one, a restricted ver-
sion of the first, does not require ASR. Only the prosodic model is
used, relying only on features that can be extracted without word
or phone alignments.

We show that the speaker waiting time is substantially short-
ened by the system that uses the ASR output, with reductions at a
given false alarm rate as high as 81% compared to the baseline sys-
tem that uses only pause duration information. We also show that
the ASR-independent system, although it degrades slightly with
respect to the ASR-dependent prosody-only system still gives re-
ductions as high as 64% with respect to the baseline system.
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