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ABSTRACT

This paper proposes two principled methods to incorporate se-
mantic information into word level confidence measurement.
The first technique uses tag and arc probabilities obtained from
a statistical classer and parser tree. The second technique uses
a maximum entropy based semantic structured language model
to use semantic structure of a sentence to assign semantic prob-
abilities to each word. Semantic features provide significant im-
provements over a posterior probability based confidence mea-
sure when used together in an air travel reservation task.

1. INTRODUCTION

Automatic speech recognition systems are far from perfect.
There are a number of factors including environment, telephone
line quality, and speaker variability that can impair speech
recognition performance. Moreover, in some cases a speech
understanding unit can generate an incorrect parse result and
sends the dialog on a completely wrong path. This may lead to
a failed dialog. In order circumvent these problems it is vital
to employ a reliable confidence metric that can identify speech
recognition errors. This information can be used to generate
repair dialogs.

The majority of the approaches to confidence annotation meth-
ods use two basic steps: (1) generate as many features as possi-
ble based on speech recognition and/or natural language under-
standing process, (2) use a classifier to combine these features
in a reasonable way. Therefore the two main issues for confi-
dence measures are (1) what features are useful for confidence
annotation and (2) how to combine these feature in a sensi-
ble way. There are a number of studies attempting to answer
these questions. Typically, confidence measures depend on the
type of the task. For domain independent large vocabulary
speech recognition systems, posterior probability based on a
word graph is shown to be the single most useful confidence
feature [4]. For limited domains features from a speech under-
standing unit are also helpful. There are a number of cues for
poor a speech recognition hypothesis. These cues can be ob-
served from acoustic score, language model score, word counts
in an N-best list, lattice density, phone perplexity, language
model back-off behavior, and posterior probability [2, 8, 7, 11].
However, many of these features overlap considerably and they
have been included in the recognition process directly or indi-
rectly. As a result combination of a number of features from
the same source may result in a marginal improvement over the
best single feature.

In many of the previous studies the way the semantic informa-
tion is incorporated into the decision process is rather ad hoc
with exception of [9]. For example in [11], the semantic weights
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assigned to words are based on heuristics. Similarly, in [3] such
semantic features as "uncovered word percentage”, ”gap num-
ber”, ”slot number”, etc. are generated experimentally in an
effort to incorporate semantic information into the confidence
metric.

Confidence measurement can be applied either at the word
level, phrase/concept level, utterance level or their combina-
tions. In this study, we use the posterior probability as the one
single feature obtained from the speech recognition unit and
combine with the proposed semantic features in a probabilistic
framework for each word. The rest of the paper is organized as
follows. In Section 2, we briefly describe the semantic analy-
sis employed in our work. We describe the maximum entropy
based semantic structured language models in Section 3. Sec-
tion 4 defines the semantic confidence features followed by the
experimental results. Finally, Section 6 summarizes the find-
ings and possible future research directions.

2. SEMANTIC ANALYSIS

Semantic analysis involves finding the semantic units that span
words or word groups and the relationship among these units
in a sentence. The semantic units are assigned certain tags and
labels. Moreover, higher level relationships among semantic
unit groups can also be determined. Our semantic analysis is
based on statistical classing and parsing and is currently used in
limited domain dialog systems. Domain independent statistical
semantic classers and parsers are not feasible to develop due to
the possibly unlimited number of concepts that may occur in
a domain independent task. Like any other statistical system,
our statistical parser and classer requires annotated training
data. Basically, during annotation we impose the semantic re-
lationships among the words and word groups in a hierarchical
manner. The decision tree based statistical classer/parser uses
the training data to assign probabilities to each node and arc
in a parser tree. Once the decision tree is built, during test-
ing our parser works in a left—to-right and bottom—up fashion.
Each parser action is assigned a probability given the current
context. A parser action can be in many different forms. For
example, assigning a certain tag to a word or extending a tag
to a parent label, or assigning a certain label to a set of tags
etc. is considered a parser action. Classing can be considered
as a shallow parsing. An example of the classer tree is shown
in Fig. 1. As seen in the figure each word is assigned a tag and
certain tags are grouped under a label to form a constituent.
The classer output is used as input to parser. Therefore, pars-
ing is a two step process. The function of the classer is to group
together the words that are part of a concept. The parser takes
the classer output and builds a hierarchical full semantic parse
tree. The corresponding parse tree for the classer tree is given
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NONE list the flights from New York to Hong Kong

(A) An example of a semantic classer output.

ROOT
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‘ query ‘ ‘ null ‘ ‘ flight ‘ ‘Ioc—fro‘ ‘ loc-fr ‘ ‘Ioc-loo‘ ‘ Ioc-to‘ ‘ . ‘
list the flights from LOC to LoC

(B) The parser output for the same example.

Figure 1: Classer and Parser outputs for an example sentence.

in the same figure. Here, semantically related concepts are
grouped at a higher level.

3. MAXIMUM ENTROPY BASED SEMANTIC
STRUCTURED LANGUAGE MODELING

The Maximum entropy (ME) method presents a framework to
combine multiple overlapping information sources in an effec-
tive way. ME has been widely used in statistical language mod-
eling [12]. Maximum entropy modeling matches the feature ex-
pectations exactly while making as few assumptions as possible
in the model. The multiple information sources are combined
in the following way:

ezi Aifi(o,h)

SIS ETE)

P(olh) = (1)

where o0 is the current word, f; are the feature indicators that
are activated for a certain history, and h represents the history
which may include previous words as well as tags and labels
that can be used in predicting the current word. In [1], we
used ME to model sentence based syntactic and higher level
semantic information. Semantic information is obtained from
the semantic classer and parse trees. We computed the joint
probability of a word sequence and a parse tree: P(W,C) [1].
The first step in building the maximum entropy model is to
represent a classer/parse tree as a sequence of words, tags, and
labels. The labels are divided as begin-label and end-label.

Basically, this representation (an example is given in Section
4.1 along with the token probabilities) is equivalent to enrich-
ing the original text which is composed of word sequences with
the tags and labels. This representation allows us to define
the boundaries for the semantic constituents and take the long
range semantic information into account. Since the tags are
already included in the classes used in language modeling, we
ignored them in our analysis. In [1], we proposed a set of max-
imum entropy based structured language modeling (MELM)
techniques. MELM2 is one the language models proposed there
and employed 7 types of questions about the current token

in a sentence (MELM1 corresponds to a regular n—gram). In
addition to regular n-gram questions for trigram, four more
questions are used regarding the semantic structure of the sen-
tence. These questions are (1) current active parent (L;), (2)
L; and number of words to the left since starting the current
constituent (IV;), (3) Ls, N; and previous word token, (4) the
previous completed constituent (O;) and number of words to
the left since completing O;. The history given in Eq. 1 above
consists of answers to these questions.

Interpolating MELM?2 with the class based trigram provided
significant improvement over a sophisticated class-based lan-
guage model [1]. This improvement is due to the inclusion
of new semantic information that was not part of the original
speech recognition system.

4. SEMANTIC CONFIDENCE FEATURES

Our semantic analysis is based on a statistical classer and
parser. The issue that we want to address is what features
we can obtain from the semantic analysis. We answer these
questions in two ways resulting in two methods along with two
feature sets to incorporate semantic information into confidence
measurement.

4.1. Semantic Tags and Labels

The classer/parser performs a left—to-right bottom-up search
to find the best parse tree for a given sentence. During search,
each node and arc in the parse tree is assigned a probability.
Node probability represent the probability of having that node
there in the parse tree given previous words, tags and labels.
Similarly, an arc probability represents the probability of plac-
ing that arc between the current node and its parent. The
example below shows a classer tree in text format along with
the node and arc probabilities. Note that each token is assigned
a pair of probabilities. The first probability is for the node and
the second probability is for the arc.

:NONE  1list the flights from New York to Hong Kong
{0.4273 {!S!_1_1 :NONE_dmfeedback_1_0.9979
list_word_0.9996_0.9957 the_word_0.9882_0.9957
flights_word_0.9996_0.9957 from_word_0.9848_0.9957
{L0C_0.9999_0.9998 new_city_0.4901_0.9813
york_city_0.9998_0.9989 L0C_0.9999_0.9998}
to_word_0.9986_0.9957 {L0C_0.9999_0.9981
hong_city_0.9979_0.9881 kong_city_0.9601_0.9957
L0OC_0.9999_0.9981} !S!_1_1} }

Any of the probabilities in this tree can potentially be used as
a semantic feature. We considered classer tag (cTag), classer
tag-arc (cTagArc), parser tag (pTag), and parser tag-arc (pTa-
gArc) to combine with the posterior probability. In the example
above, “0.4901” is a cTag, and “0.9813” is a cTagArc probabil-
ity for the word “new”. Similarly, the corresponding pTag and
pTagArc probabilities are extracted from the parse tree.

4.2. MELM2 Features

The language model score for a given word in MELM2 model is
conditioned not only on previous words but also tags, labels and
relative coverage of these labels over words. MELM?2 presents
an effective statistical method to combine word sequences with
the semantic parse tree. Therefore we can use the MELM2 score
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as a feature for confidence measurement. However, MELM2 for
a given word only depends on the previous word sequence and
the parse tree up to that word. In [5], it is observed that on
subset of the Switchboard development test data correctness on
w; has a significant effect on w;4+1. For example, wiy1 is correct
87% of the time when w; is correct and only 48% of the time
when w; is incorrect. Even though it is a different data set, this
observation suggests we can expect a low score for the current
word if the previous word is recognized incorrectly. Besides the
MELM2 score for the current word w;, we considered a window
of three words ([wi—1 w; wit1]), MELM2-ctx3, and five words,
MELM2-ctx5, to capture the context information.

5. EXPERIMENTAL RESULTS AND DISCUSSION

We have carried out experimental investigations of confidence
measurement with the IBM DARPA communicator system.
MELM2 is trained on 137K sentences in air travel domain. An
additional 18K sentences are used for smoothing. The MELM?2
model is trained using the improved iterative scaling algorithm
using fuzzy smoothing [1, 12]. The confidence measurement
training data is obtained by pooling eight other DARPA com-
municator sites’ evaluation data. This data was from the calls
received by those communicator systems during the June 2000
evaluations. The corresponding evaluation data for the IBM
DARPA Communicator system is used as test data. One should
note that many of these communicator sites have different dia-
log strategies. Although the task is the same, the dialog ques-
tions and the answers can be quite different. Having no overlap
within the training and test data as far as the systems go adds
one more degree of difficulty to our experiments. The training
data consist of 10640 sentences and 28666 words. The test data
consist of 1173 sentences and around 3600 words. Therefore an
average sentence contains around three words. The acoustic
models are trained using air travel and generic telephony data.
A separate class based trigram language model with deleted
interpolation is trained on the MELM2 training and held out
data and used during speech recognition.

The posterior probabilities are obtained from the sausages [10]
which is motivated by minimizing the word error rate rather
than sentence error rate. A sausage is a simplified word graph
with a specific topology. The word graph is converted into
a sequence of confusion sets along time. Each confusion set
consists of a group words which are competing hypotheses for a
certain time interval. The posterior probabilities for each word
is obtained by summing the probabilities of all the paths going
over that word.

For each sentence in the confidence training and test data, a
sausage is generated and the consensus hypothesis, which is the
best path from sausage is hypothesized as the speech recogni-
tion output. The best path computed based on the posterior
probability resulted an average of 1.4% improvement over the
confidence measurement training and test data compared to
regular Viterbi based decoding (21.1% versus 19.7%). Each
word is labeled as correct (“1”) or incorrect (“0”) after aligning
the hypothesis with the reference transcripts. All the recogni-
tion hypotheses are classed using statistical semantic classing.
Each sentence is scored with MELM2 to assign semantic prob-
abilities to each word. The corresponding semantic features are
extracted for all the words in the sentence. All of the positive

(correct recognition) and negative (misrecognition) examples
are pooled in two sets. A decision tree is built using the re-
spective features. The decision tree has used the raw scores of
each feature. In our decision tree algorithm, the tree is grown
by partitioning the data recursively in each node until either
the node becomes homogeneous or the node contains too few
observation (< 200). In order to predict the correctness of a
word from the features, one follows the path from the root, to
a leaf, according to splits at the interior nodes.

It is useful to have a single measure of performance for confi-
dence measurement. The Equal Error Rate (EER) is one such
measure. ERR is the operating point on an Receiver Operating
Characteristics (ROC) curve where False acceptance is equal to
false rejection. However, for spoken dialog systems it is not a
useful operating point as one needs to accept as many correct
words as possible at a very low False Acceptance (FA) rate. Ta-
ble 2 summarizes the Correct Acceptance (CA) rates for word
level recognition errors at false alarm rates of 5% and 10%. The
FA and CA are calculated using the following formula:

# of falsely accepted words
Total # of negative examples
CA = # of correctly a.uc.cepted words % 100 3)

Total # of positive examples

In Fig. 2 we present the ROC curve for MELM2 based fea-
tures. Here, MELM2 refers to the language model score for a
given word, and MELM2-ctx3 refers to MELM2 score of context
three where previous and the next scores are included as part
of the current score. Similarly, MELM2-ctx5 refers to a win-
dow of five scores around the current score. Including context
around the current word improves the performance. at 5% FA
rate MELM2-ctx3 outperforms MELM2 by 16%. Note that on
overall MELM2-ctx5 does not perform as well as MELM2-ctx3.
We attribute this to very short sentences (average of 3 words
each). Combining each MELM2 based features with the poste-
rior probability improves the CA rate significantly. Note that
the most interesting part of the ROC curve for dialog systems
is between 0-10%, and the feature combination is particularly
effective in this range. Although, the individual MELM2 fea-
ture performances compared to posterior probability is fairly
low, when combined with the posterior it improves the overall
result. This is because of the fact that MELM2 based features
bring complementary new information for posteriors. We ex-
tracted the CA rates at 5% and 10% FA rate from the ROC
curve and presented them in Table 2. The best improvement
at 5% FA is 14.6% for posterior combined with MELM2-ctx5.

FA

x 100 (2)

The results for classer/parser based features are shown in Fig. 3.
The features considered here are cTag, cTagArc, pTag and pTa-
gArc. Although there are a number of combinations of these
features among themselves and with the posterior, not all of
them are included in Fig. 3. The performance of the some of
the remaining combination are given in Table 1. Even though
the relative improvement of these features combined with pos-
terior probability is similar, the best performance is obtained
when posterior is combined with pTag and pTagArc: at 5% FA
rate they outperformed posterior by 13%.

The improvement in CA for both feature sets at 10% FA rate
is moderate (4-5%). Note that the posterior probability has
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Figure 3: Receiver Operating Characteristics (ROC) for posterior

probability, classer and parse probabilities.

different CA rates at the same FA rates in the tables. This
is because of the fact that some of the word units used by
classer/parser and MELM2 are different. For example, “BUF-
FALONEW_YORK?” is a unit for posterior probability and
MELM2 but it is three units: “BUFFALO”, “NEW”, and
“YORK” for classer/parser. Therefore the same posterior score
is repeated three times when combined with the classer/parser
scores. As a result total number of positive and negative exam-
ples are different for MELM2 and classer/parser based feature
sets which leads to different ROC for the posterior probability.

6. CONCLUSIONS AND FUTURE WORK

We proposed two methods to generate word level semantic fea-
tures and integrate them with the speech recognition based pos-
terior probability feature in a principled manner. The first set
of semantic features consists of tag, tag-arc probabilities for
statistical classer and parse trees. The second set of semantic
features are derived from the maximum entropy based seman-
tic structured language models (MELM?2) with variable context
around a given word. Combination of these features with poste-
rior probability provided an improvement of around 13-14% for
correct acceptance at 5% false acceptance rate, over posterior
probability. Our future research will focus on including dialog
state or turn information [6] as well as using semantic features
from MELMS3 [13]. Moreover, we will attempt to extend word
level confidence measurement to concept-level, in which case we
expect the semantic features to be more effective.
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Performance of the MELM2 Based Features.(%)

5% FA 10% FA
Posterior 53.1 73.4
MELM2 23.5 39.5
MELM2-ctx3 39.0 50.7
MELM2-ctx5 30.4 45.1
Posterior + MELM?2 65.4 78.6
Posterior + MELM2-ctx3 65.6 77.5
Posterior + MELM2-ctx5 67.7 77.6

Table 1: Correct Acceptance (CA) rates at 5% and 10% False
Acceptance (FA) rates for MELM2 based features.

Performance of the Classer/Parser Features.(%)
5% FA 10% FA
Posterior (Post) 45.7 71.0
cTag 17.4 35.2
cTag + cTagArc 20.1 37.9
pTag 16.8 34.2
pTag + pTagArc 24.6 43.8
Post + cTag 54.5 70.9
Post + cTag + cTagArc 55.3 71.3
Post + pTag 52.9 73.2
Post + pTag + pTagArc 58.9 74.9
Post + cTag + pTag + pTagArc 54.9 71.9
Post + cTag + cTagArc + pTag + pTagArc 58.5 74.1

Table 2: Correct Acceptance (CA) rates at 5% and 10% False
Acceptance (FA) rates for Classer /Parser based features.
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