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ABSTRACT

Confidence measures are used in a number of applications to verify
the user input or to measure the certainty of the recognition out-
puts. Most of the HMM-based systems use MFCC features with
Gaussian mixtures models to estimate confidence. In this paper,
we propose a new approach to estimate confidence by combining
the posterior probabilities of articulatory features (AF) computed
by a set of AF classifiers. This AF-based confidence measure gives
comparable performance in terms of classification equal error rate
(EER) to the Gaussian mixture-based approach but reduces the
computation by 50% (as measured by the approximated number
of multiplications) and consumes smaller memory. When the AF-
based confidence is combined with confidence from the Gaussian
mixtures, the EER is further reduced. This AF confidence can be
particularly useful for platforms with limited computing resources
such as hand-held devices.

1. INTRODUCTION

Although current speech recognition systems can achieve high recog-
nition accuracy, they are not yet perfect and errors do occur. In
applications such as the automatic call attendant, it is better to
identify a recognition error based on a measure of recognition cer-
tainty or confidence and in the case of low certainty, it can prompt
the user to repeat the input rather than using the likely erroneous
recognition result for the transaction. In other applications, such
as computer assisted reading or pronunciation learning, confidence
measures can be applied to verify the user inputs.

Because mel-frequency cepstral coefficients (MFCC) are com-
monly used for recognition, confidences are also commonly de-
rived from MFCC features directly [1, 2, 3] using Gaussian mix-
ture models (GMM) within the HMM framework. We called this
the GMM-based confidence. In this paper, we propose an alter-
native approach that estimates confidence using articulatory fea-
tures (AF), which captures the characteristics of speech produc-
tion. These AFs can be viewed as an intermediate representation
of the MFCCs because they are extracted from MFCCs by a set of
classifiers as reported in our earlier work [4].

Articulatory information, such as the place and manner of ar-
ticulations, is an abstract description of some important properties
during speech production. The use of articulatory information as
features is more phonologically meaningful than acoustic features
because they explicitly represent the underlying speech production
process. AF recognition systems, such as [5, 6], have been shown
to work as good as the acoustic feature systems in terms of recog-
nition performances. Using the extracted AF, confidences are com-

puted by considering the correctness of various articulatory prop-
erties of the hypothesized phone which are directly related to the
quality of pronunciation rather than solely on the acoustic prop-
erties. For applications such as pronunciation learning, not only
can it indicates the confidence but also potentially suggests pos-
sible production errors. In addition, less computational cost and
memory are consumed when compared to the confidence measure
approaches using mixture models within HMMs.

In this paper, confidences are derived from either the acoustic
feature models or the articulatory feature models without the use
of any language modeling information. Instead of evaluating word
confidences, we evaluate the phone-level confidences which can
be used as important building blocks for word/utterance verifica-
tion [7]. In the next section, we describe how to estimate posterior
probability as confidence based on the MFCC features with mix-
ture models and the articulatory features with classifiers. In Sec-
tion 3, we describe the experiments and results. We conclude the
paper in Section 4.

2. ESTIMATING CONFIDENCE

Suppose a recognizer outputs a string of hypothesized units during
decoding (this string can be of either phones or words), it can be
converted into a sequence of phones, denoted as ���� ��� ���� ���,
with the corresponding starting and ending times, ������ ����, ...,
���� � ��� ��. Phone level confidences are computed on this hy-
pothesized phone string with the corresponding phone boundaries.
To fairly compare different confidence measure approaches, a sin-
gle hypothesized phone sequence and the corresponding phone
boundaries are used. Given the phone labels and boundaries, we
can actually consider the confidence of each phone independently.
To simplify our notation, for phone ��, its starting time is denoted
as �� instead of ��� and the ending time is denoted as �� instead of
���.

2.1. Estimating Posterior Probabilities

The posterior probability of a phone �� starting at time �� and
ending at time �� can be written as �����������, where ����� is the
acoustic observations (MFCC) from time �� to ��. By applying
Bayes’ rule,

��� ������
��
��� � ���

����������������

��������
(1)

where �������� is the total likelihood of the observations and �����������
and ����� are the observation likelihood conditioned on phone ��
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and phone prior probability respectively. Equation 1 is sometimes
called the log likelihood ratio (LLR) because it is a ratio of the
target phone likelihood against the observation likelihood and is
commonly used as confidence [1, 2].

2.2. GMM-based Confidence

In an HMM-based recognition system, the likelihood of the target
phone in the numerator of Equation 1, �����������, is often approx-
imated by the likelihood of the best state sequence through the
target phone. The denominator, however, represents the likelihood
of the observations and has to be computed by explicitly summing
over all possible state sequence of a filler model, such as an un-
constrained phone loop or a loop of HMM phone-states.

�������� �
�

�

��������������� (2)

This is again often approximated by the likelihood of the best path
via the Viterbi algorithm, given by

�������� � �	

�

��������������� (3)

In this paper, we used a loop of HMM phone-states with the Viterbi
approximation for both phone-conditional likelihood and the ob-
servation likelihood when computing the GMM-based confidence.

2.2.1. Computation

It is complicated to measure the exact amount of computation be-
cause it depends on the implementation and platform. To simplify
our computation, we ignore the computation involved in perform-
ing Viterbi maximization and the cost of additions but instead, fo-
cuses on the approximated number of multiplications. Certainly,
the use of pruning or tying and other techniques may also affect
the results. Because they really vary depending on particular task
and performance level, they are also ignored in the computation.

Suppose the GMM-based confidence is estimated using an un-
constrained loop of 	 phone with 
 states per phone and each
state uses � mixtures for a �-dimensional feature vector. To
compute the likelihood of a D-dimensional diagonal Gaussian, it
involves at least �� multiplications because of the quadratic terms
and the inverse covariance. The total number of multiplications
needed to evaluate the likelihood of one frame is then approxi-
mately ���� �
 �	. The memory usage is a function of the
size of the state space of the order 
�	�
�

2.3. AF-based Confidence

2.3.1. AF Extraction

In this work, five abstract articulatory properties voicing, rounding,
front-back, manner and place are used and their values are shown
in Table 1.

Similar to our previous work [4], each phone is mapped to a
deterministic vector of AF property values. This is just a rough
approximation because of human articulators are actually asyn-
chrony in real speech, however, the true AF properties are dif-
ficult to obtain. Let’s denote ������� as the �-th property of
phone ��. If we use the phone /aa/ as an example, ����(aa)
= voiced, ���(aa) = not rounded, ���(aa) = back, ���(aa) =
vowel, ���(aa) = low�. That is, a phone is represented by a 5-
dimensional target vector. Under this framework, the probability

Feature group Values # Value

Voicing Voiced, Unvoiced, Sil 3
Rounding Rounded, Not Rounded 4

Nil, Sil
Front-back Front, Back ,Nil, Sil 4

Manner Vowel, Stop, Fricative, Nasal 6
Approximant & Lateral, Sil

Place High, Middle, Low, 10
Dental, Labial, Coronal,
Palatal, Velar, Glottal, Sil

Table 1. 5 articulatory properties and their feature values

of observing a phone is equivalent to the probability of observing
its articulatory properties, that is,

����� � ���������� �������� �������� �������� ���������

�
�

�

����������� (4)

by assuming the AF properties are independent to simplify the cal-
culation. To be exact, not all the AF properties are independent.

The AF extraction process is the same as in [4]. For each
articulatory property, say the �-th one, a Multi-Layer Perceptron
(MLP) is trained to determine the posterior probabilities, ���������,
of observing value � using the �-th window of MFCCs, ��� (a win-
dow of 9-frames MFCC around time � is used in AF models). For
example, if � = 1 and � = voicing, ��������� � ���voicing����� is
the probability that the speech is voiced at time �.

2.3.2. Confidence Using the Articulatory Features

Similar to what is defined in Section 2.2, our goal is to compute
the posterior probability, ��� � ���������, in which � spans from ��

to ��. To clarify our discussion, we further denote �� as the phone
label for the �-th frame. That is, � � � implies ��� � �� ����� �
�� � � � � ��� � �. As shown in Equation 4, the probability of a phone
in the AF framework is equal to the joint probability of its five AF
properties. If these AF properties are assumed to be independent,
the posterior probability ��w� � ������ can be approximated by,

��w� � ������ �

��

���

������w� � �������� (5)

where ������w� � ������� is the output from the ��� AF MLP.
Using the AF probabilities, per-frame phone posterior proba-

bility, ���� � ������, can be computed according to Equation 5.
The next question is how to compute the posterior probability for
a sequence of frames, ��� � ���������. While it is tempting to
just multiply the per-frame phone posterior probability, the frames
are not independent. A reasonable assumption would be that the
observations are conditional independent given that we know the
phone labels. In such case, the per-frame phone likelihoods, �������� �
�� can be combined. This gives,

����������
��
�� � �� �

���

����

�������� � �� (6)

where the per-frame phone likelihood is obtained by applying Bayes
rule

�������� � �� �
���� � ������������

���� � ��
� (7)
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To simplify the derivation, the phone prior probabilities are
assumed to be uniform. Using Bayes rule, the posterior probability
for phone � occurring between �� and �� is given by,

��� ��w��
�� � ��������� � ���

���������w
��
�� � ���

�
���������w��

�� � ��
(8)

� ���

�
�
������w� � ���

�

�
� ������w� � ��

(9)

� ���

�
� ��w� � �������������

�

�
�
��w� � ������������

�(10)

This can be further simplified by removing the terms
�

�
������

which appears in both the numerator and denominator. Applying
the AF probabilities as given Equation 5, Equation 10 is expanded
to

��� ��w��
�� � ��������� � ���

�
�

�
�
���������������

�

�
�

�
�
��������������

� (11)

2.3.3. Computation

If articulatory features are already extracted, the multiplication re-
quired to evaluate AF-confidence is quite small. For a set of 	
phones, the number of multiplications per frame is only 
	. How-
ever, the number of multiplications required to extract the AFs us-
ing the MLP classifiers is more substantial. Suppose each of the
five AF MLPs has� inputs,� hidden units and� output units, the
number of multiplications for each AF classifier is�������.
Again, we ignore the cost of additions in our computation. The
memory usage for the AF is very small and it is only of the order
of the number of hidden units, O(R).

3. EXPERIMENTS

All our experiments were performed on the TIMIT [8] corpus.
39-dimensional acoustic feature vector, 12 MFCC, the normalized
power as well as their first and second order derivatives were used
for recognition. Each of the 42 context independent phones was
modeled by a 3-state left-to-right Hidden Markov Model (HMM)
with 16 diagonal covariance Gaussian mixtures per state. For sim-
plicity, this is called the 16 Gaussian mixtures models (GMM).
The models were trained and tested on the SI and SX sentences of
the TIMIT training and testing set respectively using the HTK [9].

For the AF extraction, nine frames of 26-dimension MFCC
(no 2nd order derivatives) were used as input to the five AF MLPs.
These MLPs contained a single hidden layer which was composed
of 50 hidden units. They were trained using the Quicknet soft-
ware [10].

To fairly compare different approaches, confidences were es-
timated on the hypothesized phones obtained from the 16 GMM.
The hypothesized phones are first compared with the true tran-
scription using dynamic programming alignment in order to mark
the correctness of the hypothesized phone sequences. There are
a total of 43973 hypothesized phones, 30164 are correctly rec-
ognized while 13809, including insertions, are incorrectly recog-
nized.

In addition to the 16 GMM used in recognition, another con-
text independent HMMs of the same topology with only 8 diago-
nal covariance mixtures per state were also used to investigate the
effect of model resolution against the computational cost on the
confidence performance. This is called the 8 GMM.

Confidence measures # Multiplication EER %

8 GMM 79000 36.9
16 GMM 158000 36.4

Using AF prob. 60000 36.3

Table 2. Number of multiplications and EERs of the three ap-
proaches

3.1. Evaluation Metrics

To evaluate the performance of the different confidence measure
approaches, we use the classification equal error rate (EER) and
the Detection Error Trade-off Curve (DET). The confidence of a
phone is compared to a threshold. A phone is accepted if its confi-
dence is larger than the threshold, otherwise, it is rejected. A false
acceptance (FA) occurs if a mis-recognized phone is accepted and
a false rejection (FR) occurs if a correctly recognized phone is re-
jected. At each threshold, the FA rate and FR rate are calculated
in which FA rate equals to the number FA normalized by the total
number of mis-recognized phones and FR rate equals the num-
ber of FR normalized by the total number of correctly recognized
phones. The threshold used for classification is varied to obtain
multiple sets of false acceptance (FA) rates and false rejection (FR)
rates. These FR and FA rates are plotted in the DET [11] curve.

Besides the DET curve, the EER [3], i.e. the point on the DET
curve in which the FR rate and the FA rate are the same, is also
used for evaluation.

3.2. Evaluation Results

There are a total of three confidence measure approaches being
evaluated, both the computational cost and the EER are compared
among them. All the confidence measure approaches are based on
the same hypothesized phone string and the corresponding dura-
tions obtained in HMM-based recognition.

These three approaches compute LLR from:

� acoustic feature-based 8 GMM

� acoustic feature-based 16 GMM

� the AF probabilities estimated by the five AF MLPs

We compare the computational cost of different approaches
based on the number of multiplications required as described in
Sections 2.2.1 and 2.3.3. As discussed in Section 2.2.1, only the
number of multiplications is counted. The number of multiplica-
tions required to compute the posterior probability for each frame
using the GMM was 
� phones �� states per phone � # mixtures
per state ��� MFCC ��. To estimate AF-based confidence, the
multiplications required for each frame was � MLPs ��� hidden
unit � (� frame ��� MFCC + total �� MLP outputs) + 
� phones
�
. Table 2 summarizes the number of multiplications required
per frame as well as the EERs of the above three confidence mea-
sure approaches on 1344 testing utterances with a total of 43973
hypothesized phones.

As shown in Table 2, using the models with 16 GMM to esti-
mate confidences double the number of multiplications as com-
pared to that of using 8 GMM. The number of multiplications
required by the AF-based approach was approximately 24% and
62% less than those required by using 8 GMM and 16 GMM re-
spectively and it is the lowest EER out of the three approaches.

Confidence measure performance can be improved by com-
bining the GMM-based confidence with the AF-based confidence.
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Linear combination
Min Max Sum Mul

EER 0.37067 0.3635 0.3573 0.3780

Table 3. EER of different linearly combined confidences from the
16 GMM and the AF-based approach
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Fig. 1. DET plot of various confidence scoring approaches

Four different combination operators are applied to the 16-GMM-
based confidence and the AF-based confidence. They are mini-
mum (Min), maximum (Max), summation (Sum) and multiplica-
tion (Mul) operators. For the Sum and Mul combinations, different
combination weights can be applied to the two confidences. Our
previous experience in combining AF and MFCC systems [4] in-
dicated that the weights are depended on the performances of the
individual systems. Because the EERs of the two measures before
combination are very similar, summation and multiplication with
equal weights are applied. The EER of different combinations are
summarized in Table 3 and a lower EER is obtained only for the
Sum combination which is consistent with the findings in [5].

Figure 1 summaries the DET plots of the four approaches. As
shown in the plot, confidences computed using the 8 GMM give
the worse performance and consistently better results are obtained
by the 16 GMM. Although nearly the same EER are obtained by
the 16 GMM and the AF-based confidence, the 16 GMM performs
slightly better at some other operating points. Summing the 16-
GMM-based confidences and the AF-based confidences resulted
in the best performance over all operating points.

4. CONCLUSION

In this paper, we have proposed a phone confidence measure ap-
proach based on the articulatory features probabilities estimated
from MLP classifiers. Articulatory features have the advantage
that it is phonologically meaningful. For applications such as pro-
nunciation learning, not only can it indicates the confidence but

also potentially suggests possible production errors. This approach
gave similar performance compared to the commonly used ap-
proach of mixture models. In addition, by combining the mixture
model and the AF-based confidences, improved performance over
either one is obtained. The AF-based confidence requires signif-
icantly less computation and memory. The reduced computation
and memory can be particularly useful for applications with lim-
ited computing resources, such as those in hand-held devices.
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