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ABSTRACT and word-independent (generalized) naive Bayes models.
As in statistical language modelling, the purpose of the gen-
eralized model is to smooth the (class posteriors) estimates
given by the specific models.

The smoothed naive Bayes model and a brief review of
predictor features are given in sections 2 and 3, respectively.
In section 4, experimental results are reported on two veri-
fication tasks.

Utterance verification can be seen as a conventional pat-
tern classification problem in which a feature vector is ob-
tained for each hypothesized word in order to classify it as
either correct or incorrect. Itis unclear, however, which pre-
dictor (pattern) features and classification model should be
used. Regarding the features, we have recently proposed
new feature, callethord Trellis Sability (WTS), that can
be profitably used in conjunction with more or less standard
features such acoustic Sability. This is confirmed in this 2. SMOOTHED NAIVE BAYESMODEL
paper, where amoothed naive Bayes classification model )
is proposed to adequately combine predictor features. on'Ve denote the class variable byc = 0 for correct and
a series of experiments with this classification model and ¢ = 1 for lhcorrect. Given ;?1 hypothesized word and
several features, we have found that the results provided? D-dimensional vector of (discrete) featuresthe class
by each feature alone are outperformed by certain combi- POSteriors can be calculated via the Bayes' rule as
nations. In particular, the combination of the two above- P(c|lw) P(z|c,w)
mentioned features has been consistently found to give the P(cle, w) = ; ; )

. o Yo P(d|w) P(x|d, w)
most accurate result in two verification tasks.

Therefore, our basic problem is to estim&té:|w) for each

word andP(z|c, w) for each class-word pair. For simplic-

ity, we make the naive Bayes assumption that the features
gare mutually independent given a class-word pair,

1. INTRODUCTION

Current speech recognition systems are not error-free an
in consequence, it is desirable for many applications to pre- D
dict the reliability of each hypothesized word. From our P(z|c,w) = H P(z4|c,w) 2)
point of view, this can be seen as a conventional pattern d—1
recognition problem in which each hypothesized word is to . -

Given N training sampleq(z,,, cn, w,)}Y_;, we can

be transformed into a feature vector and then classified as Ly Un) S n=1s .
either correct or incorrect [1]. The basic problem then is to estimate the unknown probabilities using the conventional

decide which predictor (pattern) features and classification frequencies

model should be used. N(c,w)

We have recently proposed a new feature, ca¥\edd P(cjw) = N(w) ©)
Trellis Sability (WTS) [2], that performs relatively well in N(za, ¢, w)
comparison with several well-known features [3, 4, 5, 6]. P(z4lc,w) = ——"—— d=1,....,D (4)

In this paper, we propose smoothed naive Bayes classi- N (e, w)
fication model to profltably combine these features. The where theN() are Suitab|y defined event counts; i_e_, the
model itself is a combination ofiord-dependent (specific) events aréc, w) pairs in (3) andz 4, ¢, w) triplets in (4).
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To circumvent this problem, we have considerecabso-

|ute discounting smoothing model imported from statistical
language modelling [7]. The idea is to discount a small con-
stantb € (0,1) to every positive count and then distribute
the gained probability mass among the null counts (unseen
events). Thus, for each woid, if N(c,w) =0forc =1

(ore = 0), (3) is replaced by

N(c,w) —b

if N(c,w) >0
N
P(clw) = b(m e (5)
Nwy YOS

Similarly, for each(c,w), if N(z4,c,w) = 0 for one or
more possible values af;, the probability function (4) be-
comes

% if N(za,c,w)>0
P(zale,w)= M% if N(z4,c,w)=0 ©
d

z!l N (2!, c,w)=0

where)M denotes the gained probability masg -~ times

the number of seen events). Note t#¥t: 4|c) is used as

a generalized distribution to divide M among the unseen
events. To prevent null estimates, it is also smoothed by
absolute discounting (with a uniform backoff)

N(xdac) —b i
W if N(zq,c) >0
_ 1
P(zale) =9 z&;N%&,c)>0 N -0 "
N y1 NEeo=

z!:N(z!;,c)=0

In practice, there are marfy, w) pairs for which nearly
all N(z4, ¢, w) counts are null and, therefore, even the smoo-
thed model (6) gives inaccurate estimates. To deal with
these extreme cases, we have defined a global threshold fo
the N (e, w) counts. For thoséc, w) pairs with counts be-
low this threshold, the generalized model (7) is used instead
of (6). Similarly, if a wordw does not occur in the training
data,P(c|w) is approximated byP(c).

Using the models trained as explained above, in the test
phase, utterance verification is performed by classifying a
word as incorrectiP(c = 1 | «, w) is greater that a certain
thresholdr (cf. section 4.3).

3. PREDICTOR FEATURES

A set of well-known features has been selected to perform
the experiments presented in section 4:

Acoustic stability: Number (or percentage) of times
that a hypothesized word appears at the same posi-
tion (as computed by Levenshtein alignment)An
alternative outputs of the speech recognizer obtained
using different values of th&rammar Scale Factor
(GSF), i.e. aweighting between acoustic and language
model scores [3].

LMProb: Language model probability [4].

Hypothesis density (HD): The average number of the
active hypotheses within the hypothesized word bound-
aries [5].

PercPh: The percentage of hypothesized word phones
that match the phones obtained in a “phone-only” de-
coding [4].

Duration: The word duration in frames divided by its
number of phones [4].

ACscore: The acoustic log-score of the word divided
by its number of phones [6].

In addition we consider a new feature that we have re-
cently introduced called “Word Trellis Stability” (WTS).
Let w be a word of the recognized sentence ang |gte,,
be the starting and ending framesuaf0 < s,, < e,, < N,
where N is the number of frames of the given utterance.
The WTS ofw is computed as:

B 1 &N C(w,t)
WTS(w) = ew—Sw+1 t,:ZSw S C(w', t)
N-1 ’
Cw,t) = > Y  (af—a)

t=t' heHq(w,t')

whereH, is a set of word-boundary partial hypotheses that
are most probable at timdor a certain range of GSF values
fa;,af]. In addition, in each hypothesis 6, (w, ') the
wordw must be active at time framé. More details about
the WTS can be found in [2].

4. EXPERIMENTS

We carried out experiments using two different corpora. One
is the Traveler task, a Spanish speech corpus of person-to-
person communication utterances at the reception desk of
a hotel [8]. The other is thEUB task, an ltalian speech
corpus ofphone calls to the front desk of a hotel [9]. Main
features of the (disjoint) training and test sets, for both cor-
pora, acquired in the context of the&/ERANS project [8, 9],

are summarized in table 1.
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of the classification accuracy. We denote this area ratio as

Table1. Traveler and FUB speech corpus AROC. Note that an AROC value @f0 would indicate that
Traveler task FUB task all words can be correctly classified. We have used both
fraining | test || training | test ROC curves and the AROC measure to conveniently eval-
# speakers 20 12 276 54 uate and compare the classification accuracy for different
#run.words | 13,728 | 3,390 || 52,511 | 5,381 feature combinations. _ _
# vocabulary 683 _ 2,459 _ Table 2 shows the AROC value using the (single-feature)
bigram perplex.|  — 6.8 _ 31 smoothed model (eq. 1) for thigaveler and theFUB cor-

— — : ) pus. It can be observed tradoustic stability (AS) and WTS
(*) The training/test partition is slightly different from the one used in [8]: . . .
here the test.set ‘ bset of the traini X cers. b ttﬁre consistently the best performing single features for both
ere Ine fest-sel Speakers are a subset o he fraining-set speakers, bu c%rpus. On the other hand, the newly introduced WTS fea-
utterances differ. L .
ture significantly outperforms all the other traditional fea-
tures.

4.1 Traveler tax Table 2. AROC value for each individual feature

For the experiments with th&aveler task speech corpus, Traveler task FUB task
24 context-independent Spanish phonemes were modeled Feature | AROC || Feature | AROC
by conventional left-to-right continuous-density hidden Mar- AS 1.73 AS 1.69
kov models (HMM). A bigram language model was esti- WTS 1.73 WTS 1.62
mated using the whole trainirtgxt corpus of theTraveler HD 165 |l LMProb | 1.55
task [8]. The test-set Word Error Rate was %. PercPh 1.65 HD 1.49
LMProb 1.62 PercPh 1.44
4.2. FUB task Duration | 1.62 ACscore | 1.42
ACscore | 1.59 Duration | 1.41

The FUB corpus involves highly spontaneous speech data
and contains many non-speech artifacts. The training set _
was used to train ltalian context-dependent phone models. To fu_rther exploitthe usefulness of_the fea_tures, the smoo-
The acoustic models were left-to-right continuous density thed naive Bayes model presented in section 2 was used
HMMs, trained using Linear discriminant analysis (LDA) to combine different features in the classification process.
and a Viterbi approximation [10]. Decision-tree clustered C_Iassification accuracy_improvementswere obtained through
generalized triphones (CART with, 500 tied states plus  different feature combinations. In tfiaveler corpus, a
silence) were used as phone-units. A smoothed trigramSCMe improvement is achieved when the two best single

language model was estimated using the transcription of f€atures are combined. None of the other combinations out-
the training utterances. The test-set Word Error Rate wasPerforms the AS and the WTS single-feature performance.
27.5 %, For theFUB corpus, different combinations of the three best

single-features work better than the single-feature perfor-
. mance. A significant improvement is achieved when WTS
4.3. Experimental results is combined with AS. The combination of LMProb and AS
To perform the experimental study, a conventional contin- Performs slightly better than the AS-only performance. No
uous speech recognizer based on Viterbi beam search hafhree-feature combination improves the combination of AS
been used with the language and acoustic models describe@"d WTS. Table 3 shows the AROC values for the best re-
in the last subsections. sults obtained.
In evaluating verification systems, two measures are of

interest: thefrue Rejection Rate(TRR, the number of words Table 3. AROC values for the best feature combinations

that are incorrect and are classified as incorrect divided by Traveler ask

the number of words that are incorrect) and Haése Re- Feature AROC
jection Rate (FRR, the number of words that are correct and ASTWTS 77
are classified as incorrect divided by the number of words

that are correct). The trade-off between TRR and FRR val- FUB task

ues depends on a decision threshol(see section 2). A Feature AROC
Receiver Operating Characteristic (ROC) curve represents AS+WTS L.75
TRR against FRR for different values of The area un- AS+LMProb | 1.71

der a ROC curve divided by the area of a worst-case diag-
onal ROC curve, provides an adequate overall estimation
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Fig. 1. Comparative ROC curves for single features AS and

HD versus the best feature combination (A TS). Top: [7]

Traveler corpus; bottomFUB corpus.

As a summary of the results, figure 1 shows ROC curves
obtained using the best feature combination, the best single 8]
feature and a traditional feature (HD), for thieaveler and
theFUB corpus.

Our best results are based on two main contributions.
The first one is the discrimination power of the newly intro-
duced WTS feature. And the second is the capability of the
proposed naive Bayes model to improve the performance of [9]
individual features, by adequately combining them under a
sound statistical framework.

[10]
5. CONCLUSIONS

We have proposed a smoothed naive Bayes model to es-
timate confidence measures in speech recognition verifica-
tion. Smoothing is based on traditional techniques applied
in the context of statistical language modelling for speech
recognition. The results show that the combination of dif-
ferent features is significantly better than the single-feature
performance of a set of well-known features. Also, the WTS
feature, which we have recently introduced [2], has demon-
strated to be particularly effective to improve the classifica-
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