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ABSTRACT

Utterance verification can be seen as a conventional pat-
tern classification problem in which a feature vector is ob-
tained for each hypothesized word in order to classify it as
either correct or incorrect. It is unclear, however, which pre-
dictor (pattern) features and classification model should be
used. Regarding the features, we have recently proposed a
new feature, calledWord Trellis Stability (WTS), that can
be profitably used in conjunction with more or less standard
features such asAcoustic Stability. This is confirmed in this
paper, where asmoothed naive Bayes classification model
is proposed to adequately combine predictor features. On
a series of experiments with this classification model and
several features, we have found that the results provided
by each feature alone are outperformed by certain combi-
nations. In particular, the combination of the two above-
mentioned features has been consistently found to give the
most accurate result in two verification tasks.

1. INTRODUCTION

Current speech recognition systems are not error-free and,
in consequence, it is desirable for many applications to pre-
dict the reliability of each hypothesized word. From our
point of view, this can be seen as a conventional pattern
recognition problem in which each hypothesized word is to
be transformed into a feature vector and then classified as
either correct or incorrect [1]. The basic problem then is to
decide which predictor (pattern) features and classification
model should be used.

We have recently proposed a new feature, calledWord
Trellis Stability (WTS) [2], that performs relatively well in
comparison with several well-known features [3, 4, 5, 6].
In this paper, we propose asmoothed naive Bayes classi-
fication model to profitably combine these features. The
model itself is a combination ofword-dependent (specific)
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and word-independent (generalized) naive Bayes models.
As in statistical language modelling, the purpose of the gen-
eralized model is to smooth the (class posteriors) estimates
given by the specific models.

The smoothed naive Bayes model and a brief review of
predictor features are given in sections 2 and 3, respectively.
In section 4, experimental results are reported on two veri-
fication tasks.

2. SMOOTHED NAIVE BAYES MODEL

We denote the class variable by�; � � � for correct and
� � � for incorrect. Given a hypothesized word� and
a �-dimensional vector of (discrete) features�, the class
posteriors can be calculated via the Bayes’ rule as

� ����� �� �
� ������ ����� ���
�� � ��

����� ������ ��
(1)

Therefore, our basic problem is to estimate� ����� for each
word and� ����� �� for each class-word pair. For simplic-
ity, we make the naive Bayes assumption that the features
are mutually independent given a class-word pair,

� ����� �� �

��
���

� ������ �� (2)

Given� training samples����� ��� ����
�
���, we can

estimate the unknown probabilities using the conventional
frequencies

� ����� �
���� ��

����
(3)

� ������ �� �
����� �� ��

���� ��
� � �� 	 	 	 � � (4)

where the���� are suitably defined event counts; i.e., the
events are��� �� pairs in (3) and���� �� �� triplets in (4).

Unfortunately, these frequencies often underestimate the
true probabilities involving rare words and the incorrect class.
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To circumvent this problem, we have considered anabso-
lute discounting smoothing model imported from statistical
language modelling [7]. The idea is to discount a small con-
stant
 � ��� �� to every positive count and then distribute
the gained probability mass among the null counts (unseen
events). Thus, for each word�, if ���� �� � � for � � �
(or � � �), (3) is replaced by

� ����� �

����
���

���� ��� 


����
if ���� �� � �




����
if ���� �� � �

(5)

Similarly, for each��� ��, if ����� �� �� � � for one or
more possible values of��, the probability function (4) be-
comes

� ������ ���

������
�����

����� �� ��� 


���� ��
if �����������

�
� �������
� �������

��

�
�����

�
�������

if �����������
(6)

where� denotes the gained probability mass (	
������ times

the number of seen events). Note that� ������ is used as
a generalized distribution to divide� among the unseen
events. To prevent null estimates, it is also smoothed by
absolute discounting (with a uniform backoff)

� ������ �

��������
�������
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�
�
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�
�����
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���
��
�

��

�
�����

�
�����

if ����� �� � �

(7)

In practice, there are many��� �� pairs for which nearly
all����� �� �� counts are null and, therefore, even the smoo-
thed model (6) gives inaccurate estimates. To deal with
these extreme cases, we have defined a global threshold for
the���� �� counts. For those��� �� pairs with counts be-
low this threshold, the generalized model (7) is used instead
of (6). Similarly, if a word� does not occur in the training
data,� ����� is approximated by� ���.

Using the models trained as explained above, in the test
phase, utterance verification is performed by classifying a
word as incorrect if� �� � � � �� �� is greater that a certain
threshold� (cf. section 4.3).

3. PREDICTOR FEATURES

A set of well-known features has been selected to perform
the experiments presented in section 4:

� Acoustic stability: Number (or percentage) of times
that a hypothesized word appears at the same posi-
tion (as computed by Levenshtein alignment) in

alternative outputs of the speech recognizer obtained
using different values of theGrammar Scale Factor
(GSF), i.e. a weighting between acoustic and language
model scores [3].

� LMProb: Language model probability [4].

� Hypothesis density (HD): The average number of the
active hypotheses within the hypothesized word bound-
aries [5].

� PercPh: The percentage of hypothesized word phones
that match the phones obtained in a “phone-only” de-
coding [4].

� Duration: The word duration in frames divided by its
number of phones [4].

� ACscore: The acoustic log-score of the word divided
by its number of phones [6].

In addition we consider a new feature that we have re-
cently introduced called “Word Trellis Stability” (WTS).
Let � be a word of the recognized sentence and let��, ��
be the starting and ending frames of�, � � �� � �� � � ,
where� is the number of frames of the given utterance.
The WTS of� is computed as:

������ �
�

�� � �� � �

���
���
�

���� ����
��

����� ���

���� ��� �

����
����

�
����������

��� � ���

where	� is a set of word-boundary partial hypotheses that
are most probable at time� for a certain range of GSF values
[��,�� ]. In addition, in each hypothesis of	 ���� �

�� the
word� must be active at time frame��. More details about
the WTS can be found in [2].

4. EXPERIMENTS

We carried out experiments using two different corpora. One
is theTraveler task, a Spanish speech corpus of person-to-
person communication utterances at the reception desk of
a hotel [8]. The other is theFUB task, an Italian speech
corpus ofphone calls to the front desk of a hotel [9]. Main
features of the (disjoint) training and test sets, for both cor-
pora, acquired in the context of the EUTRANS project [8, 9],
are summarized in table 1.
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Table 1. Traveler and FUB speech corpus

Traveler task� FUB task
training test training test

# speakers �� �� ��	 �

# run. words ��� ��� �� �
� ��� ��� �� ���
# vocabulary 	�� � �� 
�
 �
bigram perplex. � 		� � ��

(*) The training/test partition is slightly different from the one used in [8]:

here the test-set speakers are a subset of the training-set speakers, but the

utterances differ.

4.1. Traveler task

For the experiments with theTraveler task speech corpus,
�
 context-independent Spanish phonemes were modeled
by conventional left-to-right continuous-density hidden Mar-
kov models (HMM). A bigram language model was esti-
mated using the whole trainingtext corpus of theTraveler
task [8]. The test-set Word Error Rate was�	� %.

4.2. FUB task

The FUB corpus involves highly spontaneous speech data
and contains many non-speech artifacts. The training set
was used to train Italian context-dependent phone models.
The acoustic models were left-to-right continuous density
HMMs, trained using Linear discriminant analysis (LDA)
and a Viterbi approximation [10]. Decision-tree clustered
generalized triphones (CART with�� ��� tied states plus
silence) were used as phone-units. A smoothed trigram
language model was estimated using the transcription of
the training utterances. The test-set Word Error Rate was
��	� %.

4.3. Experimental results

To perform the experimental study, a conventional contin-
uous speech recognizer based on Viterbi beam search has
been used with the language and acoustic models described
in the last subsections.

In evaluating verification systems, two measures are of
interest: theTrue Rejection Rate (TRR, the number of words
that are incorrect and are classified as incorrect divided by
the number of words that are incorrect) and theFalse Re-
jection Rate (FRR, the number of words that are correct and
are classified as incorrect divided by the number of words
that are correct). The trade-off between TRR and FRR val-
ues depends on a decision threshold� (see section 2). A
Receiver Operating Characteristic (ROC) curve represents
TRR against FRR for different values of� . The area un-
der a ROC curve divided by the area of a worst-case diag-
onal ROC curve, provides an adequate overall estimation

of the classification accuracy. We denote this area ratio as
AROC. Note that an AROC value of�	� would indicate that
all words can be correctly classified. We have used both
ROC curves and the AROC measure to conveniently eval-
uate and compare the classification accuracy for different
feature combinations.

Table 2 shows the AROC value using the (single-feature)
smoothed model (eq. 1) for theTraveler and theFUB cor-
pus. It can be observed thatacoustic stability (AS) and WTS
are consistently the best performing single features for both
corpus. On the other hand, the newly introduced WTS fea-
ture significantly outperforms all the other traditional fea-
tures.

Table 2. AROC value for each individual feature
Traveler task FUB task

Feature AROC Feature AROC

AS �	�� AS �		

WTS �	�� WTS �		�
HD �		� LMProb �	��
PercPh �		� HD �	


LMProb �		� PercPh �	


Duration �		� ACscore �	
�
ACscore �	�
 Duration �	
�

To further exploit the usefulness of the features, the smoo-
thed naive Bayes model presented in section 2 was used
to combine different features in the classification process.
Classification accuracy improvements were obtained through
different feature combinations. In theTraveler corpus, a
some improvement is achieved when the two best single
features are combined. None of the other combinations out-
performs the AS and the WTS single-feature performance.
For theFUB corpus, different combinations of the three best
single-features work better than the single-feature perfor-
mance. A significant improvement is achieved when WTS
is combined with AS. The combination of LMProb and AS
performs slightly better than the AS-only performance. No
three-feature combination improves the combination of AS
and WTS. Table 3 shows the AROC values for the best re-
sults obtained.

Table 3. AROC values for the best feature combinations
Traveler task

Feature AROC
AS�WTS �	��

FUB task
Feature AROC
AS�WTS �	��
AS�LMProb �	��
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Fig. 1. Comparative ROC curves for single features AS and
HD versus the best feature combination (AS�WTS). Top:
Traveler corpus; bottom:FUB corpus.

As a summary of the results, figure 1 shows ROC curves
obtained using the best feature combination, the best single
feature and a traditional feature (HD), for theTraveler and
theFUB corpus.

Our best results are based on two main contributions.
The first one is the discrimination power of the newly intro-
duced WTS feature. And the second is the capability of the
proposed naive Bayes model to improve the performance of
individual features, by adequately combining them under a
sound statistical framework.

5. CONCLUSIONS

We have proposed a smoothed naive Bayes model to es-
timate confidence measures in speech recognition verifica-
tion. Smoothing is based on traditional techniques applied
in the context of statistical language modelling for speech
recognition. The results show that the combination of dif-
ferent features is significantly better than the single-feature
performance of a set of well-known features. Also, the WTS
feature, which we have recently introduced [2], has demon-
strated to be particularly effective to improve the classifica-

tion performance.
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