
UTTERANCE VERIFICATION BASED ON STATISTICS
OF PHONE-LEVEL CONFIDENCE SCORES

Ananth Sankar and Su-Lin Wu

Nuance Communications
1380 Willow Road

Menlo Park, CA 94025

ABSTRACT

We present new acoustic confidence scores for utterance verifica-
tion based on novel combinations of phone-level posterior prob-
ability statistics. A common utterance acoustic confidence score
used in the literature is the arithmetic mean (computed over the
utterance) of the phone log posterior probabilities. This approach
can be problematic when a large part of the utterance is in-grammar
(IG), but a small part is out-of-grammar (OOG). For example, a
caller says an OOG name “Larry” and is incorrectly recognized
as an IG name “Harry”. Since most phones were correctly rec-
ognized, the mean of the phone posteriors gives a high utterance
level score even though the recognition result should ideally be
rejected. We introduce additional statistics, such as the variance
and low percentile points of the phone-posterior scores over the
utterance, that help in capturing the deviation of otherwise good
recognition matches. We report on our experiments on combining
these statistics. In particular, by normalizing the mean with the
standard deviation, we achieved a 10-20% relative improvement
in performance for alpha-digit test sets where OOG utterances are
often incorrectly recognized as very similar IG ones.

1. INTRODUCTION

Utterance-level verification is a necessary component for
real-world automatic speech recognition (ASR) applications.
Acoustically-based methods work by computing an utterance-level
confidence score that measures how well the recognition hypothe-
sis matches the observed utterance data. Utterances whose con-
fidence score falls below a pre-determined, application-specific
threshold are rejected. Ideally, misrecognized IG utterances and
all OOG phrases would be rejected by the utterance verification
mechanism.

Various methods have been proposed for computing confi-
dence scores, including purely acoustic measures [1], measures
that incorporate language model information (e.g., word graphs
and N-best lists [2]), and combined measures [3]. A common
utterance-level acoustic confidence score is the geometric average
of the posterior probabilities of the phones in the hypothesis, or
equivalently, the arithmetic average of the log posterior probabil-
ity of the phones [4]. In the next section we show how this score
relates to the posterior probability of the recognition hypothesis.

While a simple, inexpensive approach, the mean phone pos-
terior probability does not always work well. For example, in
some recognition errors, the hypothesis is very similar to what the
speaker actually said, but is off by a few phones. Since most of
the phones in the recognition hypothesis are correct, and only a

few wrong, the mean posterior score will typically be high, result-
ing in the incorrect hypothesis being accepted. For such cases it
makes sense to think of other statistics of the phone posterior prob-
abilities that capture the effect of the outlier phones for which the
acoustic match is poor. An example of where this may happen is
when a person says an OOG name “Larry”, but is misrecognized
as “Harry”.

In this paper, we propose the use of the variance and low per-
centile points (for example, the 5th or 10th percentile) of the phone
posterior probability scores as new measures of acoustic confi-
dence that can capture the mismatch of a few phones in the recog-
nition hypothesis.

Section 2 motivates and describes our baseline acoustic confi-
dence score, which is the geometric mean of the phone-posterior
probabilities over the utterance. In Section 3, we lay out the new
statistics that we will study. In Section 4, we consider different
ways to combine the statistics to compute utterance-level scores.
Section 5 presents experimental results combining various statis-
tics. We show that simply dividing the mean phone posterior score
by the standard deviation gives the best results, improving per-
formance by 10-20% in alpha-digit tasks, while not detrimentally
affecting other tasks.

2. PHONE-POSTERIOR PROBABILITY-BASED SCORES

The geometric mean of the phone-posterior probabilities [4, 1] can
be well motivated as we show below.

It is meaningful to score a recognition hypothesis � with the
posterior probability of the hypothesis given the observed feature
vector sequence � , i.e.,

���� � � ����� �
� �����

� ���
� ���� (1)

Considering only the Viterbi segmentation of the hypothesis, we
can write the conditional probability in the right-hand-side of Equa-
tion 1 as

� ����� � � ������� � � � ������� ��� � � � � ����

where�� is the feature vector sequence segmented into phone ��.
Assuming the phone observations are independent of each other,
and depend only on the phone into which they are segmented, we
get

� ����� � ��
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I - 5840-7803-7663-3/03/$17.00 ©2003 IEEE ICASSP 2003

➠ ➡



Finally, if we use a unigram phone language model for � ��� �
� ���� ��� � � � � ���, we have

���� � ��
���

� �������

� ����
� ����

� ��
���� ��������

Our independence assumption on the �-length phone sequence is
quite strong, and in order to correct for it, we may normalize by the
number of phones, raising the right-hand-side of the last equation
to the power of �

�
. This gives rise to the method of using the

geometric mean of the phone posterior scores:

���� � ���
���� ��������

�

�

Equivalently, the confidence score in the log probability domain is
(we use the same notation ���� for the log domain too):

���� �
�

�
���

��� ��	 � �������� �

Since it is convenient for the score to lie in a fixed range, it is
common practice to pass c(H) through a monotonically increasing
squashing function, such as a sigmoid. The monotone property
makes sure that the rejection behavior is unaltered.

Making similar independence assumptions at the frame level,
we compute � ������� as the geometric mean of the frame-level
posteriors � ���������:

� ������� �
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where ���� is the �th feature vector in the sequence that is seg-
mented into ��, and ���� is the number of frames in the segmenta-
tion. In our system, we compute � ��������� using the likelihood
score for the corresponding context-dependent phone. For com-
putational reasons, the normalizing term � ������ is computed by
summing over the context-independent phones [5].

3. UTTERANCE-LEVEL STATISTICS OF
PHONE-POSTERIOR SCORES

In the previous section, we laid out the motivation for the use of the
arithmetic mean of the log posterior probabilities of the phones in
the recognition hypothesis as an utterance-level confidence score.
However, as we described in the introduction, when the recogni-
tion hypothesis is only slightly different from what the speaker
actually said, a large score results, and the system accepts the mis-
recognized utterance.

To address such cases, we are motivated to look for measures
that capture the deviation of a small fraction of phones in the
recognition hypothesis. Low percentile points, such as the 5th,
10th, or 20th percentile points are such statistics. They represent
the worst scoring phones, but not the high scoring ones. Thus we
hope to be able to reject hypotheses that are phonetically almost
the same as what was actually said. In a related idea, low scoring
words were considered for utterance verification in [6].

Since we sometimes have very few phones in the utterance (as
in the case of a Names task), the low percentile estimates will be
somewhat noisy. To arrive at a similar score, we also tried using
the mean of the scores below a certain percentile point, for exam-
ple, the mean of the scores below the median.

Another statistic of interest is the variance (or standard devi-
ation). The variance will be larger when there are a few outlier
phones with poor acoustic matches. Typically, we would expect
an utterance to be rejected to either have a low mean and/or a
large variance, whereas an utterance to be accepted will have both
a high mean and a low variance. Thus it makes sense to divide the
mean by the standard deviation and reject based on this normalized
score.

4. COMBINATION OF UTTERANCE-LEVEL
STATISTICS

Apart from using the standard-deviation-normalized mean score,
we also tried combining the mean with the other statistics by build-
ing a simple statistical model on the various scores for the IG and
OOG data. A score feature vector � was created with each statis-
tic of interest being a component, and a Gaussian distribution was
trained for the IG and OOG utterances. The utterance-level confi-
dence score was then computed using the following log likelihood
ratio:

���� � 	
�������� 	
��������� (2)

This is similar to one of the methods suggested in [7] for combin-
ing different acoustic scores. We also tried Fischer’s linear dis-
criminant analysis [8] to compute the best linear combination of
the statistic features.

5. EXPERIMENTAL RESULTS

The speech recognition system employed for our experiments uses
Genonic hidden Markov models (HMM). In Genonic HMMs [9],
triphone states are clustered using bottom-up agglomerative clus-
tering. Each state cluster shares a set of Gaussians (also called a
Genone). Each state in a cluster has an independent set of mix-
ture weights to the Gaussians in the shared Genone. The Amer-
ican English acoustic models used for our experiments contain
about 25,000 triphone HMMs, 500 Genones, and 32 Gaussians
per Genone, for a total of 16,000 Gaussians.

Our experiments use field data from a variety of real,
in-service applications, including variable-length alpha-digits,
length-16 digit strings, small-vocabulary menu, medium-
vocabulary names, and a large-vocabulary stock quote task. In
each grammar, application-specific constraints are applied where
possible to optimize the recognition performance. For example,
if a certain letter could only appear in a certain position in the
alpha-digit string, this constraint was represented in the recogni-
tion grammar.

Table 1 shows the approximate number of IG and OOG utter-
ances that were used for each test. The relative sizes do not reflect
the actual proportions from a live application. The second column
in the table gives the acronym with which we will refer to these
test sets.

Table 2 shows the individual utterance-level statistics of the
phone-posterior log probability estimates that we experimented
with, and the acronyms used in the plot legends.

In Figure 1, we use the ALPHA test set to plot ROC curves for
the Mean, NormMean, Pct5, and Mean50 statistics. On the 
-axis
are the false-accept OOGs (�����), and on the �-axis is the in-
grammar error (Error IG), which is the sum of the false-reject IGs
(��	�) and false-accept IGs (��	�), the latter being the mis-
recognitions of IG utterances. Figure 2, plots the same curves for
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Data Type Acronym Number Number
IG OOG

16-digit DIG16 5000 5000
strings

variable-length ALPHA 1500 2500
alpha-digits

menu MENU 2500 500
names NAMES 2000 4000

stock quotes QUOTES 2500 500

Table 1. Number of utterances in each test category

Statistic Acronym

Arithmetic Mean Mean
Mean divided NormMean

by Standard Deviation
5 percentile Pct5

20 percentile Pct20
30 percentile Pct30

Mean below median Mean50
Mean below 30 Mean30

percentile

Table 2. Utterance-level phone-posterior statistics that were stud-
ied

the QUOTES task. For the ALPHA test set, all the new statistics
give better performance than the baseline arithmetic mean of the
phone log posteriors. Of these, the normalized mean performed the
best. For the QUOTES task, the normalized mean did not change
the performance; however, the 5th percentile, and the mean be-
low the median gave worse results than the baseline. This may be
because there are far fewer phones per utterance in this case (as
compared to the ALPHA task), and the corresponding estimates of
the Pct5 and Mean50 are noisy.

We ran similar experiments and plotted ROC curves, for all the
other test sets. For DIG16, the normalized mean gave an improve-
ment, though smaller than that for ALPHA. For all other tasks, the
normalized mean did not help or hurt. The other statistics were not
useful by themselves either.

Next we explored whether a combination of the various statis-
tics could improve performance using the approach described in
Section 4. We trained Gaussian classifiers with feature vectors
that included all the statistics in Table 2. To get the maximum
possible gain for initial evaluation purposes, we trained the clas-
sifiers on the test data itself. The resulting likelihood ratio score
(Equation 2) did not give any improvement over the normalized
mean score. Similarly, Fischer’s linear discriminant also did not
improve over the normalized mean score.

Table 3 shows the equal error rate (EER) for the Mean and
NormMean statistics. The largest improvements were attained us-
ing the NormMean statistic. We achieved a 26.7% relative im-
provement in the EER for the ALPHA test set, while maintaining
performance for the other test sets.

EERs don’t describe the shape of the curve away from the sin-
gle point reported. They are appropriate when the number of IG
utterances is equal to the number of OOG utterances. However,
the most likely operating point for a practical application is not the
EER point. From an application success point of view, a Total Er-
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Fig. 1. ROC for ALPHA test set

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Accept OOG

E
rr

or
 IG

Mean    
NormMean
Pct5    
Mean50  

Fig. 2. ROC for QUOTES test set

ror (TE) measure is more relevant. While each task has a different
ratio of IG and OOG utterances, we computed TE by using a 85%
IG to 15% OOG proportion across all test sets:

�� � 
��� � ���	� 
 ��	�� 
 
��� � �����

Table 4 shows the best total error for the two test sets where the
normalized mean showed an improvement. These are the ALPHA
and the DIG16 test sets. The normalized mean had no significant
positive or negative effect for the MENU, NAMES, and QUOTES
tasks. The columns of the table are Error IG (� ��	� 
 ��	�),
�����, and Total Error (TE).

The table shows a relative gain of 13% in ����� at approx-
imately the same IG accuracy for the DIG16 task. The relative
difference in total error rate is small, about 2%. For the ALPHA
task, the table shows a relative gain of 32% in ����� at approxi-
mately the same IG accuracy. The relative difference in total error
rate is 18%.
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Data Type EER
Mean Normalized Mean

(Relative diff.)

DIG16 11.7% 11.7% (0%)
ALPHA 17.2% 12.6% (26.7%)
MENU 12.8% 13.2% (-3.1%)

NAMES 23.7% 23.8% (-0.4%)
QUOTES 20.3% 21.1% (-3.9%)

Table 3. Equal Error Rates

Task Confidence Error IG ����� Total Error
Score (TE)

DIG16 Mean 11.6% 12.2% 11.7%
Normalized 11.9% 10.6% 11.5%

Mean

ALPHA Mean 4.5% 39.2% 9.7%
Normalized 4.7% 26.5% 8.0%

Mean

Table 4. Best Total Error for two different confidence scores

6. SUMMARY AND CONCLUSION

We have presented several utterance-level statistics of phone pos-
terior probability estimates for improving utterance rejection per-
formance. We considered different ways of combining these statis-
tics. In particular, we showed that a simple normalization of the
mean by the standard deviation significantly improves the rejec-
tion performance for a fixed-length digit string task and a variable-
length alpha-digit task. For a variety of other tasks we evaluated,
the normalization technique had a negligible effect. Other combi-
nations of the utterance-level statistics offered no advantage over
the simple normalization scheme.

It is interesting to view these results in light of our original
design of the confidence score. Our motivation in developing the
normalized mean score was to improve rejection performance for
cases where OOG utterances could be phonetically very similar to
IG utterances. On examination of the tasks, we found that most of
the OOG phrases for the alpha-digit task were “near” IG, i.e., they
differed from an IG phrase in only one or two alphas or digits. In
the case of the fixed-length digit strings, about a third of the OOG
data contained digits, and the rest did not. It is in these two data
sets that we observed the biggest wins, with a larger improvement
for the alpha-digits task.

In the remaining three tests, the majority of the OOG phrases
appear to be fairly disparate from the IG phrases. Our approach is
not expected to offer a significant advantage over the mean poste-
rior probability score for these cases. Again, the experiments bore
out these expectations.

In summary, a simple normalization of the mean of the phone
posterior probabilities by the standard deviation gives a signifi-
cant improvement for the target tasks where OOG utterances can
be highly confusable with IG utterances, while not affecting tasks
where this confusion is not so great.
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