
COMBINING EIGENVOICES AND STRUCTURAL MLLR FOR SPEAKER ADAPTATION

Fabrice Lauri, Irina Illina, Dominique Fohr

Speech Group, LORIA - INRIA
B.P. 239 - 54506 Vandœuvre-l`es-Nancy - FRANCE

�lauri,illina,fohr�@loria.fr

ABSTRACT

This paper considers the problem of speaker adaptation of acous-
tic models in speech recognition. We have investigated four differ-
ent possible methods which integrate the concepts of both Struc-
tural Maximum Likelihood Linear Regression (SMLLR) and Eigen-
Voices-based technique (EV) to adapt the Gaussian means of the
speaker independant models for a new speaker. The experiments
were evaluated using the speech recognition engine ESPERE on
the data of the corpusResource Management. They show that
all of the proposed methods can improve the performances of an
automatic speech recognition system (ASRS) in supervised batch
adaptation as efficiently asSMLLR and EigenVoices-based tech-
niques whatever the amount of adaptation data is available. For an
unsupervised incremental adaptation, only the approachSMLLR +
SEV gives the best results.

1. INTRODUCTION

Reducing acoustic mismatches due to speaker variability between
the training conditions and the testing conditions is a major prob-
lem in automatic speech recognition systems. This problem is par-
ticularly difficult for rapid adaptation, when the available amount
of adaptation data is small. Among the speaker adaptation tech-
niques which tackle this problem,MLLR 1 [1], [2] and Eigen-
Voices [3], [4], [5] have shown to rapidly improve the perfor-
mances of an ASRS.
WhereasMLLR becomes efficient only after a certain number of
adaptation utterances have been pronounced, EigenVoices can im-
prove the performances of an ASRS even if only one adaptation
utterance has been used (see Fig. 1). This outstanding result of
EigenVoices can be explained by the fact that unlikeMLLR, it
employsa priori information about the inter-speaker variations,
which enable it to estimate much less parameters thanMLLR. Still,
the performances of EigenVoices technique quickly saturate as more
adaptation data becomes available.

From these establishments, several speaker adaptation tech-
niques recently try to integrate the advantages of bothMLLR and
EigenVoices scheme to rapidly adapt to a new speaker the Gaus-
sian means of the speaker-independant (SI) models.
The scheme presented in [6] extends the standard EigenVoices
technique to large-vocabulary continuous speech recognition by

1We use in this paper respectively the acronymsMLLR and SMLLR
to distinguish between the version ofMLLR which uses a global transfor-
mation ([1]) and the structural version ofMLLR which uses a binary tree
structure ([2]).

training the acoustic models of each training speaker from SI mod-
els with the help ofMLLR andMAP. In [7], the eigenspace repre-
senting the inter-speaker variations is built usingPrincipal Com-
ponent Analysis (PCA) from the parameters of theMLLR regres-
sion matrices obtained for each training speaker. The regression
matrices computed for the adapted models of the new speaker
are then constrained to be located in the space spanned by the
first eigen-matrices. This method thus solves the problem of huge
memory requirements of the EigenVoices technique, for the num-
ber of parameters of the regression matrices is much smaller than
the parameters of a speaker-independant system. In [8], the au-
thors propose three approaches which combineMLLR and Eigen-
Voices adaptation. The Approach B exposed in [8] gives similar
results to EigenVoices technique but requires far less online mem-
ory and computation load. In this approach, a new fast algorithm
for maximum-likelihood coefficient estimation is used and the se-
lection of the eigenspace includes SI-model information.
All of the above approaches have shown that the integration of
MLLR and EigenVoices adaptation is fairly robust and reliable.
Nevertheless, all of them are performed in batch mode with only
a small amount of adaptation data. Some real applications, like
automatic speech recognition car-embedded systems, require that
adaptation techniques are able to improve the performances of an
ASRS continuously, after each utterance pronounced by a new
speaker.

This paper focuses to know how the performances obtained
with techniques combining EigenVoices andSMLLR evolve when
more adaptation data become available.
We have made some investigations on different possible methods
which integrate the concepts of bothSMLLR and EigenVoices for
speaker adaptation in supervised batch mode and in unsupervised
incremental mode.
The remainder of this paper is organized as follows. Structural
MLLR algorithm is introduced in Section 2. Section 3 reviews
the regular version of EigenVoices algorithm and proposes a struc-
tural version of it. Section 4 presents four different methods which
combine either EigenVoices andSMLLR techniques, or Structural
EigenVoices andSMLLR techniques. The proposed methods are
referred to as ApproachesEV + SMLLR, SEV + SMLLR, SMLLR
+ EV andSMLLR + SEV. Section 5 evaluates the different pro-
posed methods using data from theResource Management (RM)
corpus. Finally, concluding remarks are given in Section 6.

2. STRUCTURAL MLLR

The Structural version ofMLLR [2] is able to adjust the num-
ber of linear regression matrices������� � � � ���� that will
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be applied to the Gaussian mean vectors according to the avail-
able amount of adaptation data. This flexibility is realized by
using a binary tree structure that cluster the gaussians of the SI-
models. Each tree node�� with a transformation matrix�� is
called a regression class. Let���������� be the occupation prob-
ability of gaussian� of the regression class� at time �, 	� ����

���

��

��� ���������� be the number of observations associated
to the set of
� gaussians belonging to the regression class�. For
each leaf node which possesses more than���		
 observations,
that is	� � ���		
, the associated matrix is estimated by using
the set of gaussians of the node. For the leaf nodes that have not
enough observations, the associated matrix is estimated by using
the gaussians of the closest father node which has enough obser-
vations. This regression classes generation process can update the
parameters of the gaussians by using robust estimated transforma-
tion matrices.
The adapted Gaussian mean vector������� of the gaussian� of the
class� is then obtained by the transformation������� � �� 
�����

where
����� is the extended vector of the Gaussian mean������

such as
����� � �� �
�

������
�

.

3. EIGENVOICES

EigenVoices technique usesa priori information about inter-spea-
ker variations to constrain the adapted models to be located in a
dimensionality reduced speaker-space. The speaker space reduced
in dimension is obtained by applying a dimensionality reduction
technique2 to a set of� supervectors of dimension� extracted
from � well-trained speaker-dependant (SD) models. A supervec-
tor is made up with the parameters that have to be adapted. Typi-
cally, it consists in the concatenation of all of the Gaussian mean
vectors of all of the models of a speaker-dependant system if only
Gaussian means need to be adapted.
This offline step yields� supervectors of dimension�, called the
eigenvectors. To get the reduced speaker-space, only the� first
eigenvectors���� ��� � � � � ��� with � � � �� � are kept. Re-
lated to an origin�� 3, these� eigenvoices, which capture most of
the variation of the training data, span the reduced speaker-space
of dimension�.

3.1. Regular version

In the regular version of EigenVoices technique (EV), a new speaker
is located in the reduced speaker-space by a vector of� � �
weights���� ��� � � � � ���.
All of the Gaussian mean vectors��� of the adapted models are then
updated using the equation��� �

��

��� �� �� with � � �� 	� � � � �
� , where� is the total number of gaussians of the speaker-adapted
system.
The� � � weights are generally estimated usingMaximum Like-
lihood Eigen-Decomposition (MLED) [9] to maximize the likeli-
hood of the adaptation data. The other HMM parameters are ob-
tained from the corresponding SI-model parameters.

3.2. Structural version

The structural version of EigenVoices (SEV) borrows the flexibil-
ity of SMLLR by also using a Gaussian binary tree structure to ad-

2Principal Component Analysis (PCA) for instance
3
�� can be the average supervector of all the SD models or the super-

vector extracted from the SI models.

just the adaptation parameters with the available amount of adap-
tation data. Structural EigenVoices thus avoid the early saturation
encountered by its regular counterparts when more adaptation data
is available.
A regression class� in Structural EigenVoices represents a tree
node�� with a set of��� weights that will be applied only to the
corresponding gaussians belonging to the node��. The regression
classes generation process in Structural EigenVoices is the same
that the one inSMLLR : the� � � weights are estimated only if
more than��
� observations have been gathered in the class�.

As the number of adaptation parameters which need to be es-
timated in a regression class in Structural EigenVoices is smaller
than inSMLLR, the value of��
� will be lower than the value
���		
. For this reason, theoretically, SEV is able to adapt in-
dependently the Gaussian means of more regression classes than
SMLLR. Nevertheless, to avoid poor estimates of the adaptation
parameters due to a bad value of��
� , we assume that the re-
gression classes generation process in SEV is triggered only if the
total number of observations is greater than some predetermined
threshold��
� .

4. COMBINING SMLLR WITH EIGENVOICES

We propose hereafter four possible methods which integrate the
concepts ofSMLLR and EigenVoices technique and which can
be easily applied for speaker adaptation in both supervised batch
mode and unsupervised incremental mode. All of these methods
are supposed to give better results overSMLLR and EigenVoices-
based technique whatever the amount of adaptation data which has
been gathered.

4.1. Approaches EV + SMLLR and SEV + SMLLR

These approaches consist in first obtaining adapted models with
the help of either EigenVoices technique (EV + SMLLR) or Struc-
tural EigenVoices (SEV + SMLLR). The adapted models obtained
at the previous step are then used as initial models bySMLLR to
provide the final adapted models.
These approaches suggest thatSMLLR adaptation is more effi-
cient after an adaptation with one of the EigenVoices-based (EV
or SEV) techniques.

4.2. Approaches SMLLR + EV and SMLLR + SEV

These approaches swap the two steps involved in the two previous
techniques. Hence, they consist in first obtaining adapted mod-
els with the help ofSMLLR. A supervector���� is then extracted
from the adapted models generated at the previous step and another
weight���� is estimated with the help of EigenVoices technique
(SMLLR + EV) or Structural EigenVoices (SMLLR + SEV) to pro-
vide the final adapted models.
Here we assume that the EigenVoices adaptation is more robust
after an adaptation withSMLLR.
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5. EXPERIMENTAL EVALUATION

5.1. Database and System

EigenVoices,SMLLR and the proposed approaches have been im-
plemented into the automatic speech recognition system ESPERE4

[10] and evaluated on the corpusResource Management (RM).
The speech signals inRM are sampled at 16 kHz and were param-
eterized into the 11 MFCCs�� to��� and the 12 first and second
order time derivatives of�
 to ���, yielding a 35-dimensional
feature vector.
The speaker-independant training set of RM1 was used to train
the acoustic models of both the speaker-independant system and
the speaker-dependant systems. This set groups together 25 fe-
male and 55 male american native speakers. Each speaker pro-
nounced 40 training utterances, for a total of 3200 utterances. The
acoustic models of the speaker-independant system were trained
by performing 20 iterations of the Baum-Welch algorithm ; each
speaker-dependant system was trained by adapting the speaker-
independant system using 10 iterations ofStructural Maximum
A Posteriori (SMAP) [11]. We used the speech data from 2 fe-
male and 2 male speakers of the speaker-dependant set RM2 for
the adaptation phase and the recognition phase. Each speaker ut-
tered 600 training sentences (used for the adaptation phase only)
and 120 sentences (used for the recognition phase).

The acoustic units in the speaker-independant system and in
each speaker-dependant system are represented by 45 HMMs with
3 states and a HMM with one state to handle silence and short
pause. The probability density function of each state is modelled
by a mixture of 8 gaussians. Speech recognition experiments were
conducted by using the regularword-pair grammar ofRM.

The LBG method combined with theK-Means procedure5

were used to build the gaussian tree handled bySMLLR and by
the Structural version of EigenVoices.
The accumulation of the sufficient statistics during the incremen-
tal process was carried out using the procedure proposed in [12].
This procedure consists in computing for a given gaussian� its
sufficient statistics by adding to the sufficient statistics computed
for the current�� �� utterance using the previous adapted system
the sufficient statistics gathered before the� � �� utterance have
been pronounced. These sufficient statistics are then used to esti-
mate the adaptation parameters.
For each experiments, the binary tree used bySMLLR and Struc-
tural EigenVoices was built from the SI models. Its depth was set
to 6. The value of the threshold���		
 used to robustly estimate
the adaptation parameters was set to�


 ; the value of the thresh-
old ��
� was set to�
, the value of��
� was set to�


. This
parameterization seemed to provide the best results.

5.2. Experimental Results

ESPERE engine was evaluated in speaker-dependant mode, in spea-
ker-independant mode and in speaker-adapted mode. All the sub-
sequent results represents the average word accuracy (WA) of four
speakers. The confidence interval of all the results is of���,

4ESPERE is a first order HMM-based speech recognition toolbox de-
veloped at LORIA.

5TheMahalanobis distance was used as the distance measure between
a gravity center of a node and a gaussian.

with a risk of
�. TheWA of the speaker-dependant system is of
�����; theWA of the speaker-independant system is of�����.

The figure 1 shows the results of the regular version of Eigen-
Voices, Structural EigenVoices andSMLLR. EV is better thanSM-
LLR for the first two utterances. EigenVoices need to estimate
less parameters thanSMLLR with the same amount of adaptation
data, which can be done robustly in the case of EigenVoices adap-
tation. From the third utterance,SMLLR gives better results than
EigenVoices adaptation, which starts to saturate at this point. This
is due to the limited number of adaptation parameters which are
unable to capture all of the information gathered in the adapta-
tion data. Structural EigenVoices gives results slightly better than
SMLLR from the third utterance to the 24th utterance, for SEV is
able to define more regression classes and thus to transform inde-
pendently more Gaussian means thanSMLLR. SEV then starts to
saturate from the 25th utterance, certainly for the same reason that
standard EigenVoices adaptation saturates at the third utterance.
Hence, the structural version of EigenVoices push back the point
at which the performance saturation begins.
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Fig. 1. Comparison between the regular version of EigenVoices
(EV), Structural EigenVoices (SEV) andSMLLR in unsupervised
incremental adaptation

The table 1 presents the results of the four proposed methods
compared withSMLLR and the EigenVoices-based techniques for
a supervised batch adaptation.
In this adaptation mode, all of the proposed methods slightly im-
prove the performances of the speaker-independant system com-
pared withSMLLR and Structural EigenVoices technique whatever
the available amount of adaptation data. The techniquesEV + SM-
LLR and SMLLR + EV give similar results, as do the technique
SEV + SMLLR compared toSMLLR + SEV. Thus it seems that
the order of combination ofSMLLR with one of the EigenVoices-
based technique does not influence the quality of the generated
adapted models.

The table 2 shows the results of the proposed approaches com-
pared withSMLLR, EigenVoices technique and Structural Eigen-
Voices technique for an unsupervised incremental adaptation.
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1 10 50 100 300 600
SMLLR 88.6 90.7 91.1 91.5 92.3 92.4
EV 89.8 90.0 90.1 90.0 90.1 90.1
SEV 89.8 90.7 91.3 91.1 91.1 91.4
SMLLR + EV 89.8 90.4 91.2 92.1 92.8 92.8
SMLLR + SEV 89.8 91.0 91.5 91.9 92.8 92.9
EV + SMLLR 89.8 90.6 91.8 92.2 92.6 92.8
SEV + SMLLR 89.8 90.7 91.7 92.2 92.9 92.9

Table 1. Comparison of the proposed approaches withSMLLR,
Structural EigenVoices (SEV) and EigenVoices (EV) in supervised
batch mode

The techniques whereSMLLR adaptation is followed by an Eigen-
Voices-based adaptation are significantly more powerful than tech-
niques which do the opposite. We explain this behaviour by the
fact that EigenVoices can constrain too much the adapted models
used later bySMLLR. As SMLLR has no effect with the two first
utterances, the adapted models generated by EV or SEV may be
located in a bad portion of the speaker-space. This could explain
the poor results of the approachesEV + SMLLR andSEV + SM-
LLR. In this mode,SMLLR + SEV is the technique which gives the
best results.

1 5 10 15 20 30
SMLLR 88.6 90.4 90.5 90.4 90.6 91.0
EV 89.8 90.0 90.0 90.0 90.0 90.1
SEV 89.8 90.5 90.8 90.9 91.0 90.9
SMLLR + EV 89.8 90.8 90.7 90.2 90.9 89.7
SMLLR + SEV 89.8 90.9 90.8 90.3 90.8 91.0
EV + SMLLR 89.1 89.8 90.0 90.4 90.6 91.0
SEV + SMLLR 88.9 89.4 89.9 90.1 90.0 90.8

Table 2. Comparison of the proposed approaches withSMLLR,
Structural EigenVoices (SEV) and EigenVoices (EV) in unsuper-
vised incremental mode

6. CONCLUSION

We have proposed in this paper a structural version of EigenVoices
technique and four methods which combineSMLLR and Eigen-
Voices-based techniques for speaker adaptation in both supervised
batch mode and unsupervised incremental mode. It has been shown
experimentaly that Structural EigenVoices can push bask the early
saturation in performances encountered by the regular version of
EigenVoices technique. Besides, for a supervised batch adapta-
tion, the four proposed methods improve the performances of an
ASRS over bothSMLLR and EigenVoices-based techniques what-
ever the available amount of adaptation data. For a unsupervised
incremental adaptation,SMLLR + SEV provides the best results
compared to the other methods which were evaluated.
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