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ABSTRACT training the acoustic models of each training speaker from SI mod-
els with the help oMLLR andMAP. In [7], the eigenspace repre-
This paper considers the problem of speaker adaptation of acougnting the inter-speaker variations is built usPrgncipal Com-

tic models in speech recognition. We have investigated four differ- ponent Analysis (PCA) from the parameters of thdLLR regres-
ent possible methods which integrate the concepts of both Strucsion matrices obtained for each training speaker. The regression
tural Maximum Likelihood Linear RegressioB\ILLR) and Eigen-  matrices computed for the adapted models of the new speaker
Voices-based technique (EV) to adapt the Gaussian means of there then constrained to be located in the space spanned by the
speaker independant models for a new speaker. The experimentfirst eigen-matrices. This method thus solves the problem of huge
were evaluated using the speech recognition engine ESPERE ofnemory requirements of the EigenVoices technique, for the num-
the data of the corpuResource Management. They show that  ber of parameters of the regression matrices is much smaller than
all of the proposed methods can improve the performances of arthe parameters of a speaker-independant system. In [8], the au-
automatic speech recognition system (ASRS) in supervised batchhors propose three approaches which combihéR and Eigen-
adaptation as efficiently &8VLLR and EigenVoices-based tech- \pices adaptation. The Approach B exposed in [8] gives similar
nigues whatever the amount of adaptation data is available. For arresults to EigenVoices technique but requires far less online mem-
unsupervised incremental adaptation, only the appr&stii R + ory and computation load. In this approach, a new fast algorithm
SEV gives the best results. for maximum-likelihood coefficient estimation is used and the se-
lection of the eigenspace includes SI-model information.
All of the above approaches have shown that the integration of
MLLR and EigenVoices adaptation is fairly robust and reliable.
i o _— Nevertheless, all of them are performed in batch mode with only
Reducing acoustic mismatches due to speaker variability betweery small amount of adaptation data. Some real applications, like
the training conditions and the testing conditions is a major prob- 5,tomatic speech recognition car-embedded systems, require that
lem in automatic speech recognition systems. This problem is par-agaptation techniques are able to improve the performances of an

ticularly difficult for rapid adaptation, when the available amount ASRS continuously, after each utterance pronounced by a new
of adaptation data is small. Among the speaker adaptation techspeaker.

niques which tackle this problemMLLR* [1], [2] and Eigen-

Voices [3], [4], [5] have shown to rapidly improve the perfor- This paper focuses to know how the performances obtained
mances of an ASRS. N _ with techniques combining EigenVoices a8dLLR evolve when
WhereasMLLR becomes efficient only after a certain number of gre adaptation data become available.
adaptation utterances have been pronounced, EigenVoices can imjae have made some investigations on different possible methods
prove the performances of an ASRS even _if only one_adaptationwhich integrate the concepts of baBVLLR and EigenVoices for
utterance has been used (see Fig. 1). This outstanding result o§peaker adaptation in supervised batch mode and in unsupervised
EigenVoices can be explained by the fact that unl®ELR, it incremental mode.
employsa priori information about the inter-speaker variations, The remainder of this paper is organized as follows. Structural
which enable it to estimate much less parametersiharR. Still, MLLR algorithm is introduced in Section 2. Section 3 reviews
the performances of Eigen\oices technique quickly saturate as mokge regular version of EigenVoices algorithm and proposes a struc-
adaptation data becomes available. tural version of it. Section 4 presents four different methods which
combine either EigenVoices af@ILLR techniques, or Structural
From these establishments, several speaker adaptation techejgenvoices and&MLLR techniques. The proposed methods are
nigues recently try to integrate the advantages of hith R and referred to as Approachd®d/ + SMLLR, SEV + SMLLR, SMLLR
EigenVoices scheme to rapidly adapt to a new speaker the Gaus+ EV and SVILLR + SEV. Section 5 evaluates the different pro-
sian means of the speaker-independant (SI) models. posed methods using data from tResource Management (RM)
The scheme presented in [6] extends the standard EigenVoicegorpus. Finally, concluding remarks are given in Section 6.
technigue to large-vocabulary continuous speech recognition by

1. INTRODUCTION

1We use in this paper respectively the acronyitisLR and SMLLR 2. STRUCTURAL MLLR

to distinguish between the version MLLR which uses a global transfor- . . )
mation ([1]) and the structural version MLLR which uses a binary tree ~ The Structural version oMLLR [2] is able to adjust the num-
structure ([2]). ber of linear regression matricddVi, Wa,--- , Wy} that will
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be applied to the Gaussian mean vectors according to the availjust the adaptation parameters with the available amount of adap-
able amount of adaptation data. This flexibility is realized by tation data. Structural EigenVoices thus avoid the early saturation
using a binary tree structure that cluster the gaussians of the Sl-encountered by its regular counterparts when more adaptation data

models. Each tree nod@; with a transformation matrix¥; is is available.

called a regression class. Lf(g(; )) be the occupation prob- A regression class in Structural EigenVoices represents a tree
ability of gaussianm of the regression classat timet, S; = nodeG; with a set ofK' + 1 weights that will be applied only to the
Zf;l Zle ~:(9(i,m)) be the number of observations associated corresponding gaussians belonging to the nGdeThe regression

to the set ofM; gaussians belonging to the regression clagr classes generation process in Structural EigenVoices is the same

each leaf node which possesses more thanz.r.r Observations, that the one irBMLLR: the K + 1 weights are estimated only if
thatisS; > Osam g, the associated matrix is estimated by using more tharfs gy observations have been gathered in the calass
the set of gaussians of the node. For the leaf nodes that have not
enough observations, the associated matrix is estimated by Using a5 the number of adaptation parameters which need to be es-
the gaussians of the closest father node which has enough obsefia1eq in a regression class in Structural EigenVoices is smaller
vations. This regression classes generation process can update thg,, iNSMLLR, the value offszv will be lower than the value
parameters of the gaussians by using robust estimated transformaGrSMLLR_ For this reason, theoretically, SEV is able to adapt in-
tion matrices. , , dependently the Gaussian means of more regression classes than
The adapted Gaussian mean vegigr,) of the gaussiam of the SMLLR. Nevertheless, to avoid poor estimates of the adaptation
classi is then obtained by the transformatipp, ) = Wi £(i,m) parameters due to a bad valueffzv, we assume that the re-
whereg(;, ) is the elxtenolled vector of the Gaussian mgan,,) gression classes generation process in SEV is triggered only if the
such asg(;,my = [1 p(i,m)] - total number of observations is greater than some predetermined
thresholdas gy .

3. EIGENVOICES

EigenVoices technique usagriori information about inter-spea-
ker variations to constrain the adapted models to be located in a 4. COMBINING SMLLRWITH EIGENVOICES
dimensionality reduced speaker-space. The speaker space reduced

in dimension is obtained by applying a dimensionality reduction We propose hereafter four possible methods which integrate the

techniqué? to a set ofT” supervectors of dimensioP extracted . B ) .
from T well-trained speaker-dependant (SD) models. A supervec- concepts OfSMLLR and Eigenvoices _technlque and Wh'Ch can
be easily applied for speaker adaptation in both supervised batch

tor is made up with the parameters that have to be adapted. Typi- . -
cally, it consists in the concatenation of all of the Gaussian mean mode and unsupervised incremental mode. All of these methods

. are supposed to give better results oS8ILLR and EigenVoices-
vectors of all of the models of a speaker-dependant system if only : h .
- based technique whatever the amount of adaptation data which has
Gaussian means need to be adapted.

This offline step yieldd” supervectors of dimensiaR, called the been gathered.
eigenvectors. To get the reduced speaker-space, onli tfiest
eigenvectorges, e, -+ ,ex } With K < T << D are kept. Re-
lated to an origire, 3, theseK eigenvoices, which capture most of
the variation of the training data, span the reduced speaker-spac
of dimensionk.

él.l. ApproachesEV + SMLLR and SEV + SMLLR

These approaches consist in first obtaining adapted models with
the help of either EigenVoices techniqu&/+ SMLLR) or Struc-

tural EigenVoices$EV + SMLLR). The adapted models obtained

In the regular version of EigenVoices technique (EV), a new speake#t the previous step are then used as initial modelS\BLR to

3.1. Regular version

is located in the reduced speaker-space by a vectdk of 1 provide the final adapted models.

weights{wo, w1, - - ,wk }. These approaches suggest tB¥LLR adaptation is more effi-

All of the Gaussian mean vectqis of the adapted models are then  cient after an adaptation with one of the EigenVoices-based (EV

updated using the equatign = >, wy, ex Withi = 1,2, -+ | or SEV) techniques.

N, whereN is the total number of gaussians of the speaker-adapted

system.

The K + 1 weights are generally estimated usigximum Like-

lihood Eigen-Decomposition (MLED) [9] to maximize the likeli- 4.2. ApproachesSMLLR + EV and SMLLR + SEV

hood of the adaptation data. The other HMM parameters are ob-

tained from the corresponding SI-model parameters. These approaches swap the two steps involved in the two previous
techniques. Hence, they consist in first obtaining adapted mod-

3.2. Structural version els with the help oBMLLR. A supervectoe 1 is then extracted

. . ) . fromthe adapted models generated at the previous step and another
The structural version of EigenVoices (SEV) borrows the flexibil- weightwx 1 is estimated with the help of EigenVoices technique

ity of SMILLR by also using a Gaussian binary tree structure to ad- (SVILLR + EV) or Structural EigenVoicesSMLLR + SEV) to pro-

2Principal Component Analysis (PCA) for instance vide the final adapted model_s. _ o
3¢0 can be the average supervector of all the SD models or the superHere we assume that the EigenVoices adaptation is more robust
vector extracted from the SI models. after an adaptation witBMLLR.
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5. EXPERIMENTAL EVALUATION with a risk of 5%. TheWA of the speaker-dependant system is of
94.9%; the WA of the speaker-independant system i8&6%.

5.1. Database and System

) ) . The figure 1 shows the results of the regular version of Eigen-
Eigen\oices SMLLR and the proposed approaches have been im-\yces; Structural EigenVoices aSMLLR. EV is better tharSM-
plemented into the automatic speech recognition system ESPERE LLR for the first two utterances. EigenVoices need to estimate
[10] and evaluated on the corpResource Management (RM). less parameters th8MLLR with the same amount of adaptation
The speech signals RM are sampled at 16 kHz and were param- a4 which can be done robustly in the case of EigenVoices adap-
eterized into the 11 MFCQS1 to C'l1 and the 12 firstand second  {ation. From the third utteranc8MLLR gives better results than
order time derivatives o€’0 to C'l1, yielding a 35-dimensional  Ejgenvoices adaptation, which starts to saturate at this point. This
feature vector. o _is due to the limited number of adaptation parameters which are
The speaker-independant training set of RM1 was used to trainynaple to capture all of the information gathered in the adapta-
the acoustic models of both the speaker-independant system ang,, gata. Structural EigenVoices gives results slightly better than
the speaker-dependant systems. This set groups together 25 fegy | R from the third utterance to the 24th utterance, for SEV is
male and 55 male american native speakers. Each speaker progpe to define more regression classes and thus to transform inde-
nounced 40 training utterances, for a total of 3200 utterances. Th%endently more Gaussian means tSMLLR. SEV then starts to
acoustic models of the speaker-independant system were trainedagyrate from the 25th utterance, certainly for the same reason that
by performing 20 iterations of the Baum-Welch algorithm ; each giandard Eigenvoices adaptation saturates at the third utterance.

speaker-dependant system was trained by adapting the speakefyence, the structural version of EigenVoices push back the point
independant system using 10 iterationsSufuctural Maximum at which the performance saturation begins.

A Posteriori (SMAP) [11]. We used the speech data from 2 fe-

male and 2 male speakers of the speaker-dependant set RM2 for

the adaptation phase and the recognition phase. Each speaker ut-

tered 600 training sentences (used for the adaptation phase only) 9 T T T T T

and 120 sentences (used for the recognition phase). 95 -
S 9% f -
The acoustic units in the speaker-independant system and in & 93 | ,
each speaker-dependant system are represented by 45 HMMs with§ 9 | i
3 states and a HMM with one state to handle silence and short & o1 | oo, . .
pause. The probability density function of each state is modelled o PEPONES SBGRe = Sae Sl St t
by a mixture of 8 gaussians. Speech recognition experiments were S 90 g5 B-5-9-0-0-055-p- G B 0o B g B a S EE Y
conducted by using the regulaprd-pair grammar ofRM. 89 | .« .
88 1
The LBG method combined with th&-Means procedure® 87 . . . . .
were used to build the gaussian tree handledSi#.LR and by 1 5 10 15 20 25 30
the Structural version of Eigen\oices. Number of adaptation utterances
The accumulation of the sufficient statistics during the incremen-
tal process was carried out using the procedure proposed in [12]. Speaker-Independent System +
This procedure consists in computing for a given gausgiéts Speaker-Dependent System —
sufficient statistics by adding to the sufficient statistics computed E{?E&‘lﬁfe; genvoices e
for the current: — th utterance using the previous adapted system MLLR s

the sufficient statistics gathered before the- th utterance have
been pronounced. These sufficient statistics are then used to esti,:ig. 1. Comparison between the regular version of Eigenvoices

mate the adaptation parameters. (EV), Structural EigenVoices (SEV) ar@8MLLR in unsupervised
For each experiments, the binary tree used8gy.LR and Struc- incremental adaptation

tural EigenVoices was built from the SI models. Its depth was set
to 6. The value of the threshold 1/ . r Used to robustly estimate

the adaptation parameters was seit(00 ; the value of the thresh- The table 1 presents the results of the four proposed methods
old 85 zv was set ta60, the value ofvszv was set tal000. This compared wittSMLLR and the EigenVoices-based techniques for
parameterization seemed to provide the best results. a supervised batch adaptation.

In this adaptation mode, all of the proposed methods slightly im-
_ prove the performances of the speaker-independant system com-
5.2. Experimental Results pared withSMLLR and Structural EigenVoices technique whatever

. . . the available amount of adaptation data. The technifives SM-
ESPERE engine was evaluated in speaker-dependant mode, in SP§3R and SVLLR + EV give similar results, as do the technique

ker-independant mode and in speaker-adapted mode. All the SUbSEV + SMLLR compared toSMLLR + SEV. Thus it seems that
sequent results represents the average word accun#gyof four the order of combination dMLLR with one of the Eigen\oices-

speakers. The confidence interval of all the results is-0%, based technique does not influence the quality of the generated
adapted models.

4ESPERE is a first order HMM-based speech recognition toolbox de-

veloped at LORIA. The table 2 shows the results of the proposed approaches com-
5The Mahalanobis distance was used as the distance measure betweerPared withSMLLR, EigenVoices technique and Structural Eigen-
a gravity center of a node and a gaussian. Voices technique for an unsupervised incremental adaptation.
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1 10 50 | 100 | 300 | 600
SMLLR 88.6 | 90.7| 91.1| 91.5| 92.3| 924
EV 89.8 | 90.0| 90.1| 90.0| 90.1| 90.1
SEV 898 | 90.7| 91.3| 91.1| 91.1| 914
SMLLR+ EV | 89.8 | 90.4| 91.2| 92.1| 92.8| 92.8
SMLLR+ SEV | 89.8 | 91.0 | 91.5| 91.9| 92.8| 929
EV+ SMLLR | 898 | 90.6 | 91.8 | 922 | 92.6 | 92.8
SEV+ SMLLR | 89.8 | 90.7 | 91.7 | 922 | 929 | 92.9

Table 1. Comparison of the proposed approaches 8WH LR,

Structural EigenVoices (SEV) and EigenVoices (EV) in supervised

batch mode

The techniques whei®MLLR adaptation is followed by an Eigen-

(2]

(3]

(4]

(5]

\oices-based adaptation are significantly more powerful than tech- [6]

nigues which do the opposite. We explain this behaviour by the

fact that EigenVoices can constrain too much the adapted models

used later by@MLLR. As SMLLR has no effect with the two first

[7]

utterances, the adapted models generated by EV or SEV may be

located in a bad portion of the speaker-space. This could explain

the poor results of the approache¥ + SMLLR and SEV + SM-

LLR. Inthis modeSMLLR + SEV is the technique which gives the

best results.

1 5 10 15 20 30
SMLLR 88.6 | 90.4| 90.5| 90.4| 90.6 | 91.0
EV 89.8 | 90.0| 90.0 | 90.0 | 90.0| 90.1
SEV 89.8 | 90.5| 90.8 | 90.9 | 91.0 | 90.9
SMLLR+ EV | 89.8 | 90.8 | 90.7 | 90.2 | 90.9 | 89.7
SMLLR+ SEV | 89.8 | 90.9 | 90.8 | 90.3 | 90.8 | 91.0
EV+ SMLLR | 89.1| 89.8 | 90.0| 90.4| 90.6 | 91.0
SEV+ SMLLR | 88.9 | 89.4| 89.9| 90.1| 90.0 | 90.8

Table 2. Comparison of the proposed approaches @M LR,

sity Hidden Markov Models,"Comp. Speech and Language,
vol. 9, pp. 171-185, 1995.

C.J. Leggetter and P.C. Woodland, “Flexible Speaker Adap-
tation using Maximum Likelihood Linear Regressiorgu-
rospeech’ 1995, pp. 1155-1158, 1995.

R. Kuhn, P. Nguyen, J.-C. Junqua, and al., “Eigenvoices for
Speaker Adaptation,/CSLP’'1998, 1998.

R. Kuhn, P. Nguyen, J.-C. Junqua, R. Boman, N. Niedziel-
ski, S. Fincke, K. Field, and M. Contolini, “Fast Speaker
Adaptation using A Priori Knowledge, 1CASSP’ 1999, pp.
1587-1590, 1999.

R. Kuhn, J.-C. Junqua, P. Nguyen, and N. Niedzielski,
“Rapid Speaker Adaptation in Eigenvoice SpacelEEE
Trans. Speech Audio Proc., vol. 8, no. 6, pp. 695-707, 2000.

H. Botterweck, “Very Fast Adaptation for Large Vocabu-
lary Continuous Speech Recognition using Eigenvoidés,”
SLP'2000, pp. 354-357, 2000.

K.-T. Chen, W.-W. Liau, H.-M. Wang, and L.-S. Lee,
“Fast Speaker Adaptation using Eigenspace-based Maxi-
mum Likelihood Linear RegressionlCSLP’ 2000, pp. 742—
745, 2000.

] N.J.-C. Wang, S. S.-M. Lee, F. Seide, and L.-H. Lee,

9]

(10]

(11]

Structural EigenVoices (SEV) and EigenVoices (EV) in unsuper- [12]

vised incremental mode

6. CONCLUSION

We have proposed in this paper a structural version of EigenVoices

technique and four methods which combi#dLLR and Eigen-

\Voices-based techniques for speaker adaptation in both supervised
batch mode and unsupervised incremental mode. It has been shown
experimentaly that Structural EigenVoices can push bask the early
saturation in performances encountered by the regular version of
EigenVoices technique. Besides, for a supervised batch adapta-

tion, the four proposed methods improve the performances of an
ASRS over bottBMLLR and EigenVoices-based techniques what-

ever the available amount of adaptation data. For a unsupervised

incremental adaptatiorSMLLR + SEV provides the best results

compared to the other methods which were evaluated.
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