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ABSTRACT

We propose a novel speaker adaptation method, Hierarchi-
cal EigenVoice (HEV). This method extends the EigenVoice
[1] through clustering the Gaussian components of HMMs
into a hierarchical tree structure. It enables to autonomously
control a number of adaptation parameters (model complex-
ity) depending on the amount of adaptation utterances from
a new speaker. The experimental results of Japanese large
vocabulary continuous speech recognition confirmed the sig-
nificant performance increase in all range of the adaptation
utterance amounts compared with the conventional speaker
adaptation methods.

1. INTRODUCTION

For Speaker-Independent (SI) speech recognition systems, a
large amount of speech data collected from many speakers
is used to train SI HMMs. And speaker adaptation tech-
niques are used to compensate the mismatch between the SI
HMMs and a new speaker. Maximum a posteriori (MAP)
adaptation [2] and maximum likelihood linear regression
(MLLR) adaptation [3] are popular model-based adaptation
techniques. However, these adaptation techniques do not
utilize a priori knowledge of speaker variations obtainable
from the SI training database mentioned above.
Eigenvoice (EV) speaker adaptation technique [1] enables
to exploit that knowledge for rapid speaker adaptation. It
represents the HMMs adaptation parameters as a superpo-
sition of a few principal eigenvectors extracted from the SI
training database. Its implication is that the adapted HMMs
for a new speaker are represented as a single point in the
eigenspace spanned by the eigenvectors. Since the num-
ber of eigenvectors for adaptation is fixed and limited in
EV, the adaptation performance will saturate immediately
as more adaptation data becomes available. Additionally, it
is computationally expensive to apply EV to large vocabu-
lary speech recognition (LVCSR) because the HMMs have
so many Gaussian components that the dimensions of the
eigenvectors become too large.
Autonomous Model Complexity Control (AMCC) speaker
adaptation technique [4][5] introduces a tree structure in

the acoustic space to adjust the degree of parameter shar-
ing depending on the amount of available adaptation data.
This method covers a wide range of adaptation data amount,
however, it does not utilize a priori knowledge of speaker
variations.
In this paper we propose a novel adaptation method, Hierar-
chical EigenVoice (HEV) method, which unites the EV and
AMCC to improve speaker adaptation performance over all
range of adaptation data amounts. In the next section, the
original Eigenvoice method and a tree structure for continu-
ous density mixture Gaussian HMMs are briefly introduced,
and our proposed method is explained. Sec. 3 evaluates the
algorithms on a Japanese LVCSR task.

2. SPEAKER ADAPTATION
BY HIERARCHICAL EIGENVOICE (HEV)

2.1. EigenVoice(EV)

In EV, a priori knowledge of speaker variations is extracted
by principal component analysis (PCA) from many speaker
dependent (SD) HMMs. Although we only discuss on adap-
tation of the Gaussian mean vectors of HMMs in the fol-
lowing, its extension to other model parameters must be
straightforward. First, we prepare well trained speaker in-
dependent (SI) HMMs and many SD HMMs. For instance,
using the SI HMMs as an initial set of models, each SD
HMMs can be trained with each speaker’s utterances in the
SI training database. Here, it is assumed that the SD HMMs
and SI HMMs have the same topology and the same num-
ber of Gaussian mixtures. We denote xi as the difference
between Gaussian mean vectors in the SD HMMs and the
SI HMMs, where 1 < i < M and M is the total number of
Gaussian components in the HMMs. Secondly, we perform
PCA as follows. Supervectors of the speaker p, and their
correlation matrix are computed as,

Xt
p = [xt

1 xt
2 · · ·xt

M ]p, (1)

Ŝ =
1
N

N∑
p=1

(Xp − µ)(Xp − µ)t, (2)
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Fig. 1. Example of a tree structure of Gaussian components.

where the superscript “t” means the transpose of vectors and
matrices, N is the number of speakers and µ = 1

N

∑
p Xp.

Diagonalizing the correlation matrix (2), eigenvalues, λ 1 >
λ2 > · · · > λD , and their eigenvectors, w1, w2, · · · , wD ,
are obtained, where D is the number of principal compo-
nents.
For large HMMs such as triphone HMMs used in LVCSR,
the dimension of supervectors (1) and their correlation ma-
trix becomes too large to be diagonalized (computationally
expensive).
Since the larger eigenvalue means the wider speaker varia-
tion in its eigenvector direction, a few principal eigenvectors
with largest eigenvalues should be chosen for rapid speaker
adaptation. The supervector for a new speaker is repre-
sented as a superposition of those eigenvectors. Using only
a small amount of adaptation utterances from the new speaker,
the weighting coefficients of the eigenvectors can be es-
timated by the maximum likelihood eigen decomposition
(MLED) method. Its formulation is discussed in the follow-
ing sections.

2.2. Autonomous model complexity control (AMCC)
by a tree structured Gaussian Components

In AMCC [4], all Gaussian components (their total number
is denoted as M ) in the HMMs are clustered in a hierar-
chical tree structure using a top-down clustering with the k-
means algorithm and the KL divergence as a distance mea-
sure between Gaussians. Fig. 1 shows an example of a tree
structure of Gaussian components. Leaf nodes, n4 · · ·n8,
represent Gaussian components of the HMMs. The model
complexity (the number of adaptation parameters) is con-
trolled by node selection in this tree. For example, if the
node n2 is selected for adaptation, the adaptation param-
eters such as shift vectors for Gaussian mean vectors are
shared in its child nodes, n4, n5 and n6. Adaptation node
selection should be determined depending on the amount
of adaptation utterances. Namely, fine models for lower
adaptation nodes and coarse models for upper ones are au-
tonomously prepared.

2.3. Hierarchical PCA

As pointed out in the previous sections, EV selects a prede-
fined number of eigenvectors for adaptation. Therefore, EV

works fine for rapid speaker adaptation with small amount
of adaptation data, but fails to further improve its perfor-
mance when the adaptation data amount increases. To over-
come this drawback, we introduce a hierarchical tree struc-
ture in a set of HMMs Gaussian components which enables
to control the model complexity in EV depending on the
amount of adaptation data.
First, we prepare the SI HMMs and many speakers’ SD
HMMs in the same manner as EV (Sec. 2.1). Second, a
tree structure of Gaussian components is constructed based
on the SI HMMs. Each leaf node has a difference vectors
of Gaussian mean vectors between the SD and SI HMMs.
Third, we perform PCA hierarchically along the tree struc-
ture from bottom (leaf nodes) to top (a root node) as follows.
In Fig.1, the node n2 has three child nodes, n4, n5 and n6.
Then we are able to apply EV method to these Gaussians as
mentioned in Sec. 2.1, namely, we construct the supervec-
tors (3) for each speaker, p, and the correlation matrix (4),

Xt
p n2

= [xt
n4

xt
n5

xt
n6

]p, (3)

Ŝn2 =
1
N

N∑
p=1

(Xp n2 − µn2
)(Xp n2 − µn2

)t, (4)

where supervectors consist of not all Gaussian mean vectors
in the HMMs but their small subset belonging to the child
nodes of n2 (actually not mean vectors themselves but their
difference vectors as previously mentioned). Then we ex-
tract Dn2-dimensional eigenspace on the node n2 spanned
by principal eigenvectors, w1, w2, · · · , wDn2

|n2 , which
have eigenvalues, λ1, λ2 · · · , λDn2

|n2 respectively (in de-
scending order), where we use notation “·|n2” to denote the
eigenspace which belongs to the node n2. The number of
selected principal eigenvectors, Dn2 , can be determined by
the cumulative contribution ratio,

∑Dn2
i=1 λi∑
all λi

, (5)

comparing the predefined threshold α. On the node n 3, the
eigenspace is constructed in the same manner as that of n2.
To define the eigenspace for the upper layer node, n 1, we
project the supervectors of its child nodes, n2 and n3 to
their eigenspaces. For the node n2, a projected supervector
of each speaker is obtained as follows:

M̂n2 ≡ [w1, w2, · · · , wDn2
|n2 ], (6)

xp n2 = M̂ t
n2

(Xp n2 − µn2
). (7)

Combining the projected supervectors of child nodes, x p n2

and xp n3 , we get supervectors for their parent node n1,

Xt
p n1

= [xt
n2

xt
n3

]p, (8)

and the correlation matrix Sn1 , just as in (4). And then,
PCA of Sn1 extracts the eigenspace of n1. Fig 2 illustrates
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Fig. 2. An illustration of hierachical PCA.

this hierarchical EV method for the tree structure defined in
Fig. 1.
Proposed method avoids the direct diagonalization of the
correlation matrix between supervectors of all Gaussians in
the HMMs and divides the problem into smaller diagonal-
izations at tree nodes. This technique should be legitimate
since the low correlation directions discarded in the lower
layer are unimportant in extracting the high correlation di-
rection at the higher layer.

2.4. Model Complexity Control

Hereafter we consider speaker adaptation process based on
the hierarchical eigenspaces generated in the previous sec-
tions. In this section, we focus on the node selection al-
gorithm based on the amount of adaptation utterances. New
speaker’s utterances for adaptation are aligned with SI HMMs
to assign each frame in the utterances to the Gaussian in
the tree leaf node. Therefore some of the leaf node Gaus-
sians seen in the adaptation utterances has new speaker’s
feature vectors for adaptation and unseen ones do not have
any data. To achieve reliable speaker adaptation, the amount
of adaptation data and the model complexity (the number
of adaptation parameters) have to be balanced. In our hi-
erarchical tree (Fig. 1), nodes in the higher layers such as
n2, n3 and n1 have their eigenspaces for adaptation. The
model complexity can be defined as the dimensions of their
eigenspaces which are the number of adaptation parame-
ters. For node selection, the number of adaptation feature
vectors per the eigenspace dimensions on the node should
be compared with the predefined threshold θ. For instance,
we denote the total number of feature vectors for leaf node
Gaussians n4, n5 and n6 as N2 (total frame counts at n2),
and for n7 and n8 as N3. If N2/Dn2 exceeds threshold θ,
the node n2 is selected for the adaptation of n4, n5 and n6.
If not, n1 is used for the adaptation.

2.5. Parameters Estimation in Eigenspace

In the original EV, the maximum likelihood eigen decom-
position (MLED) method is used to estimate adaptation pa-
rameters, z, which are the weighting coefficients of the eigen-
vectors. These parameters maximize the likelihood p for the
adaptation data O from a new speaker as follows:

zopt = argmax
z

p(O|Y = M̂z), (9)

where Y is a supervector of all Gaussian mean vectors, and
M̂ is a linear transformation matrix from eigenspace to the
supervector space. The M̂ consists of eigenvectors as col-
umn vectors.
In our HEV, the MLED method can be also used at each
selected node. For example, at the node n2 in Fig.1, it is
apparent that (9) can be used for Y n2 = [yn4

, yn5
, yn6

], a
sub-component vector of Y , and zn2 , a point in the eigen-
space of node n2. When the node n1 is selected for adapta-
tion, (9) can be applied with M̃n1 and zn1 using the follow-
ing relation,

M̃n1 ≡
[
M̂n2 0

0 M̂n3

]
M̂n1 , (10)

Y = M̃n1zn1 . (11)

Equation (10) shows the advantage of our method over the
original EV. For LVCSR with triphone HMMs, the dimen-
sion of matrix M̃n1 may become extremely large. In HEV,
it can be replaced by a multiplication of block diagonal ma-
trices with smaller dimensions. With this manner, matri-
ces that transform eigenspaces of any node to supervectors
of Gaussian components can be generated to perform the
MLED optimization process.
To further improve the speaker adaptation performance with
less amount of data, we introduced a prior probability den-
sity g of adaptation parameter vector z and extended MLED
to MAPED (maximum a posteriori eigen decomposition)
[6],

zopt = argmax
z

p(O|Y = M̂z)g(z). (12)

Since the eigenvalues measure the extent of the speaker vari-
ation of z, we use a multivariate Gaussian (13) as a prior
density.

g(z) = N(0, λI), (13)

λt = [λ1, λ2, · · · , λD], (14)

where I is the D × D identity matrix and D is dimension
of eigenspace on the selected node.

3. EXPERIMENTS

3.1. Experimental Conditions

The proposed method was evaluated on a large-vocabulary
continuous speech recognition for Japanese. Speech was
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Fig. 3. Word accuracy rate for SI, HEV, AMCC and MLLR.

sampled at 11kHz and analyzed by 11msec frame period to
parameterize into 23 dimensional feature vectors. The SI
training database comprises about 200,000 utterances (200
utterances from each of 1000 different male speakers). Tri-
phone HMMs with diagonal covariance mixture Gaussians
were trained as a set of SI HMMs. The total number of
Gaussian components was about 4,000 and they were clus-
tered into a 3-layer tree structure with a maximum of 16
children per node. Using the SI HMMs as initial HMMs,
only Gaussian mean vectors were re-estimated for each spea-
ker’s SD HMMs. As mentioned in Sec. 2, eigenspaces for
each node were extracted hierarchically. To decide dimen-
sions of eigenspaces, we used thresholds for the cumulative
contribution ratio. We built open 10-male speaker database
where individual spoke 150 sentences for adaptation and 30
for testing.
To compare with the conventional methods, the AMCC and
MLLR were examined. For AMCC, we employed the same
tree structure of Gaussian components as used in HEV. For
MLLR, we used a regression class tree with the maximum
of 256 classes.

3.2. Results

Fig. 3 shows dictation recognition results for the test database.
The vertical axis shows average word accuracy (W.A.) of
10 speakers, while the horizontal ones show the amount of
adaptation utterances in second [sec] (lower axis) and in
the number of sentences (upper axis). The dotted line in
the figure shows the SI HMMs recognition performance (no
speaker adaptation). The lines with “MLLR” and “AMCC”
are the performance of the conventional methods mentioned
above. The lines with “HEV” are of our proposed methods,
one useing MLED for adaptation parameter estimation and
the other useing MAPED. The parameter “α” is the thresh-
old for the cumulative contribution ratio defining the dimen-

sion of node eigenspaces. “θ” is the node selection thresh-
old for adaptation described in Sec. 2.4. It demonstrates that
the proposed methods significantly outperform the conven-
tional AMCC and MLLR. The performance increase with
less amount of adaptation data reflects the effectiveness of
the proposed hierarchical structures. Estimating adaptation
parameters in MAP fashion (MAPED) was proved to be ef-
fective.The original EV is not shown on the figure since it
was computationally too expensive to perform diagonaliza-
tion of the matrix with the large dimension (which will be
roughly 23*4000 in our case).

4. CONCLUSION

We proposed a new adaptation method, Hierarchical Eigen-
Voice (HEV), that is an extension of EigenVoice (EV) with
a hierarchical tree structure of Gaussians for model com-
plexity control. The model complexity control was carried
out based on the amount of adaptation data and the opti-
mum parameters estimation formula was derived as MLED
and MAPED. The results of Japanese LVCSR experiments
shows that the proposed methods outperformed the conven-
tional speaker adaptation methods, MLLR and AMCC. Us-
ing only 5 sentences for adaptation, its recognition accuracy
achieved the same result as that of the conventional methods
with 50 sentences.
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