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ABSTRACT 
 
This paper describes a set of new algorithms that perform speaker 
clustering in an online fashion.  Unlike typical clustering 
approaches, the proposed method does not require the presence of 
all the data before performing clustering. The clustering decision 
is made as soon as an audio segment is received. Being causal, 
this method enables low-latency incremental speaker adaptation 
in online speech-to-text systems. It also gives a speaker tracking 
and indexing system the ability to label speakers with cluster ID 
on the fly. We show that the new online speaker clustering 
method yields better performance compared to the traditional 
hierarchical speaker clustering. Evaluation metrics for speaker 
clustering are also discussed. 

 

1. INTRODUCTION 
 
The goal of speaker clustering is to identify all speech segments 
from the same speaker in an audio episode and assign them a 
unique label.  The true number of speakers involved in the 
episode is usually unknown, making it a difficult problem. The 
clustering output is commonly used in speaker adaptation for 
speech recognition to collect sufficient data from the same 
speaker [2][3][4][5]. The clustering information itself is very 
useful in labeling and organizing speakers in speaker tracking or 
audio indexing applications [1].  
 
Existing clustering algorithms, such as the widely used 
hierarchical clustering [2][3][4][5], typically require that all the 
data be present before clustering can be performed. In these 
algorithms, different numbers of clusters are hypothesized based 
on local similarity or distance measures, e.g. building a 
dendrogram. Then a global criterion is used to find the best 
number of clusters. There are two drawbacks to this approach. 
First, the process is non-causal. It cannot be used in an online 
time-critical system or a system that requires incremental cluster 
information. Secondly, trying different number of clusters is 
computationally expensive and time consuming. In dendrogram-
based clustering, for example, the computational complexity 
increases exponentially with the number of audio segments. 
 
In this paper, we propose an online speaker clustering algorithm 
that does not require the presence of all the data. The clustering 
decision can be made whenever a new audio segment is received.  
We start by a brief overview of a hierarchical speaker clustering 
algorithm [2]. Then we introduce new algorithms for online 
speaker clustering. We present further improvement to the 
algorithms by studying the behavior of the decision criterion and 
the distance measure. Finally, we present the evaluation metrics 
and comparative results. 

The input to the online speaker clustering application is usually 
audio segments generated from automatic speaker segmentation, 
which is not in the scope of this paper. Interested readers are 
referred to [1][8] for more details. All the experiment results here 
are reported on reference segmentations.   
  

2. HIERARCHICAL SPEAKER CLUSTERING 
 
In 1996, we developed an automatic speaker clustering algorithm 
to improve the performance of unsupervised speaker adaptation 
[2]. There were other approach [3][4][5] using different distance 
measures and global criterion in determining number of clusters, 
all of which fell into the hierarchical speaker clustering 
framework. 
 

Consider a collection of segments }{ n21 s,...,s,s=S with each si 
denoting an audio segment that is represented by a sequence of 
feature vectors. A hierarchical speaker clustering (HC) algorithm 
can be described as follows: 
Algorithm 1.1 (Hierarchical Clustering) 
1. begin initialize c ←  n 
2.  do 
3.      find the nearest pairs in the c clusters, say, si and sj 
4.        merge si and sj 
5.      calculate the global criterion, save to G(c) 
6.      c ←  c - 1 
7.   until c = 1 
8.   return )(minarg cGc

c
←  and the c clusters 

9. end 
where c is the hypothesized number of clusters and G(c) is the 
global criterion to be minimized. There are two strengths in 
hierarchical method. Not only is it able to find the closest pairs by 
comparing distances among all the available segments, it can also 
compare different clustering strategies globally to pick the best. 
Neither of these advantages is available in the online case.  
 
To calculate the distance, we used the generalized likelihood ratio 
(GLR). A Gaussian distribution, ),( iiN Σµ , is estimated from 
the sequence of feature vectors of each audio segment si. The 
GLR between ji ss ,  can be expressed as follows: 
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where sc is the union of si and sj, and L(.) is the likelihood of the 
data given the model. We used within-cluster dispersion 

                                                 
1 The representation style for algorithms is adopted from Duda, et al. [7] 
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penalized by number of clusters for global clustering selection, 
which is expressed as follows: 
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where c is the number of clusters, Nj is the number of feature 
vectors in cluster j, and jΣ is the covariance matrix of cluster j. |.| 
denotes the determinant. 
 
The HC algorithm worked well for unsupervised speaker 
adaptation. It improves the word-error-rate as much as the hand-
labeled ideal clustering [2]. In this paper, we will examine the 
usefulness of the same GLR distance and dispersion criterion for 
online speaker clustering. 

 

3. ONLINE SPEAKER CLUSTERING 
 

3.1. Leader-follower clustering 
 
Duda, et al, present a generic approach called leader-follower 
clustering (LFC)[7], for k-means type clustering. The basic idea is 
to either alter only the cluster centroid most similar to a new 
pattern being presented so that the cluster is somewhat like the 
new pattern, or make a new cluster with the new pattern if none 
of the existing clusters are similar. The generic algorithm can be 
described as follows: 
Algorithm 2 (LFC) 
1. begin initialize θη,   
2.     w1 ←  s 
3.     do accept new s 
4.          j ← ||||minarg

' j'ws −
j

 

5.         if || s - wj || < θ  
6.               then wj ←  wj + η s (update wj) 
7.         else add new w ← s (create new cluster) 
8.         w ← w/||w|| 
9.      until no more patterns 
10.      return w1, w2, …  
11.  end 
where w is the collection of clusters, s is the input pattern, θ  is 
the threshold, and η is the learning rate.  
 
This generic algorithm can be easily adapted for online speaker 
clustering. Considering s as the audio segments, substituting the 
||.|| operation with the GLR measures and updating wj by re-
estimating a new Gaussian distribution,  we can directly use the 
LFC algorithm to perform online speaker clustering. The 
threshold θ  is empirically estimated from held-out data. The 
normalization step 8 is dropped as it is irrelevant in our case.  
 

3.2. Dispersion-based speaker clustering 
 
Data-dependent thresholds are not desirable because they reduce 
the robustness of a system. Since we have a proven criterion for 
model selection –  the within-cluster dispersion G(c), we can 
implement an online speaker clustering algorithm without the 
need for a threshold. The proposed algorithm, which we call 
dispersion-based speaker clustering (DSC) is as follows: 
Algorithm 3 (DSC) 
1. begin 
2.     w1 ←  s 
3.     do accept new s 

4.          j ← ),(minarg
' j'wsGLR

j
 

5.         G1 ←  G(w, wj{s})  "s is merged with wj" 
6.         G2 ←  G(w, s)         "s is made a new cluster" 
7.         if  G1 < G2 
8.              then update wj with s 
9.         else  add new w ← s (create new cluster) 
10.       until no more patterns 
11.       return w1, w2, …  
12.  end    
From experiments we observed that DSC had a tendency to 
underestimate the number of clusters. To see how effective the 
dispersion criterion would be, we conducted an oracle experiment 
where step 7 of Algorithm 3 was substituted by known conditions 
from a reference set. In other words, when the input s truly 
belong to an existing cluster, merge s to the cluster. Otherwise 
create a new cluster with s. In every iteration, we still computed 
the G1, G2. In Figure 1, we plot the difference, (G2-G1). Circle 
( o ) represents a merge situation in the reference, while Plus (+) 
denotes new clusters. The horizontal line is drawn at 0. Thus, if 
we were to use (G2-G1) as our criterion, any points below this 
zero line would incur a creation of new cluster and any points 
above would incur a merge. We can see that using dispersion 
alone is not effective in splitting the two different events.  

 
Figure 1. Dispersion difference plot for oracle experiment 
(The audio segments are indexed in the incoming order. Four 
audio files were processed sequentially, which is visible in the 

figure as the four descending traces. The descending is  due to the 
penalty on number of clusters. With the increase of number of  

hypothesized clusters, the difference (G2-G1) decreases.) 

 

  
Figure 2. Minimum GLR plot for oracle experiment 
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From the oracle experiment, we observed that when some of the 
minimum GLR distances were very high, it was almost certain 
that new clusters should be created and vice versa for merging. 
We plot the minimum GLR for every incoming audio segment in 
Figure 2, again with the merging and creating events labeled by 
circles and plus. It is clear that one threshold, as in the LFC case, 
is not very successful in dividing the two different events. 
However, decisions could be made with high confidence at the 
upper and lower regions as indicated in the figure. 
 

3.3. Hybrid speaker clustering 
 
The above observation inspired a hybrid algorithm (HSC) that 
utilized both the dispersion and the GLR threshold. The 
algorithm is presented as follows: 
Algorithm 4 (HSC) 
1. begin initialize LU θθ ,  
2.     w1 ←  s 
3.     do accept new s 
4.          j ← ),(minarg

' j'wsGLR
j

 

5.         Dj ← min GLR(s, wj) 
6.         G1 ←  G(w, wj{s})  "s is merged with wj" 
7.         G2 ←  G(w, s)         "s is made a new cluster" 
8.         if  Dj < Lθ  
9.              then update wj with s 
10.          else if  Dj > Uθ  
11.              then add new w ← s (create new cluster) 
13.          else if  G1 < G2 
14.              then update wj with s 
12.          else  add new w ← s (create new cluster) 
13.       until no more patterns 
14.       return w1, w2, …  
15.  end    
where LU θθ , are the upper and lower thresholds that define the 
high confidence regions. The re-introduction of thresholds are 
somewhat undesirable. However, since they only work at high 
confidence regions, they are less sensitive to data and thus more 
robust. The low confidence region in Figure 2 is still handled by 
dispersion analysis. Note that when LU θθ = , HSC becomes 
LFC. When −∞→∞→ LU and θθ , HSC becomes the DSC 
algorithm. 
 

4. EXPERIMENT RESULTS AND EVALUATION  
 
We used the four half-hour broadcast-news episodes, named as 
file1, fil2, file3 and file4, of the NIST Hub4 1996 evaluation set 
as our development data to optimize the thresholds. The 
evaluation data was taken from the Hub4 1998 evaluation set, 
which consists of two 1.5-hour broadcast news episodes.  
 

4.1. Evaluation metrics 
 
We selected three commonly used methods –  the misclassification 
rate, cluster purity, and Rand Index [6], which are described as 
follows: 
 
Consider N speakers that are clustered into C groups, where nij is 
the number of segments from speaker j that are labeled with 
cluster i. Assume that ijn has ijf  speech frames. 

Given a one-to-one speaker-to-cluster mapping, any segment 
from speaker j that is not mapped is considered an error, the 
summation of which is denoted as ej.   Then  

Misclassification rate  = ∑∑∑
= ==

C

i

N

j
ij

N

j
j ne

1 11

 (3) 

We define the final mapping as the one that minimizes the 
misclassification rate. Note that we calculate the error rate at the 
segment level, where segments with different lengths are treated 
equally. The insensitivity to length is desirable when speaker 
clusters are the end products of the application. For example, in a 
speaker retrieval application, any incorrectly retrieved segment 
should be considered as equally undesirable regardless of the 
duration of the segment. Another advantage of this error measure 
is that it provides a clear map of error distribution that is useful 
for error analysis and debugging. 
 
Cluster purity is calculated at the frame level. For each cluster i, 
calculate the pure frames fi by adding up the speech frames of the 
majority speaker in cluster i. 

Cluster purity = ∑∑∑
= ==

C

i

N

j
ij

C

i
i ff

1 11

  (4) 

Cluster purity is of great interest when speaker clustering is used 
for speaker adaptation, which concerns more about the total 
amount of correctly classified data. 
 
Rand Index gives the probability that two randomly selected 
segments are from the same speaker but hypothesized in different 
clusters, or the two segments are in the same cluster but from 
different speakers. Let •in  be the number of segments in cluster i, 
and jn• be the number of segments from speaker j,  

     Rand Index = 

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Rand Index is a theoretical measure that has been widely used for 
comparing partitions [6]. The lower the index, the higher the 
agreement is between two partitions. However, it does not 
provide any information on how the partitions are distributed and 
how the two partitions are related. 
 

4.2. Experiment results 
 
The thresholds for LFC and HSC were tuned on Hub4 1996 test 
set by minimizing the overall misclassification errors. Hub4 1998 
data set provides the fair results. All the results were compared to 
the hierarchical clustering (HC) performance. In Table 1, we 
compare the hypothesized number of clusters from each 
algorithm to the true number of speakers in each episode. 
 

# clusters 
Episode 

true # 
speakers HC LFC DSC HSC 

file1 7 8 9 10 10 
file2 13 15 17 13 17 
file3 15 16 18 15 18 
file4 20 16 22 17 22 
eval98-1 79 45 69 39 67 
eval98-2 89 90 92 58 91 

Table 1.  Comparison of number of speakers and clusters 
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All algorithms are able to hypothesize reasonable number of 
clusters on the Hub4 1996 set. On the fair test, LFC and HSC 
perform better than HC and DSC. DSC significantly 
underestimated number of clusters on both Hub4 1998 episodes.  
 
Table 2 shows the clustering performance of different algorithms 
using the three evaluation metrics described in 4.1. In general, 
DSC performed the worst in all measures, suggesting that within-
cluster dispersion measure alone might not be a good choice for 
online speaker clustering. Both LFC and HSC yielded 
comparable or better performance compared to the baseline HC. 
Even though LFC performed superior on file1, the superiority did 
not hold up on other episodes. HSC, however, performed 
consistently well on all data sets suggesting that HSC is more 
robust than LFC.  
 

4.3.  Run-time efficiency 
 
The computational complexity for hierarchical speaker clustering 
increases exponentially with number of audio segments, no matter 
how many speakers there are in the data. However, the 
complexity for proposed online speaker clustering algorithms is 
linear to the number of input audio segments. We ran HC and 
HSC on a series of test sets that contain from 80 to 1000 
segments. The elapsed-time difference is shown in Figure 3. The 
elapsed-time difference between online and offline clustering 
starts to become significant at around 200 segments. 
 

 
Figure 3.  System elapsed-time vs. number of segments 

 

5. CONCLUSION AND FUTURE WORK 
 
We have developed three algorithms for online speaker 
clustering. All algorithms have shown the ability to automatically 
find reasonable number of clusters. LFC and HSC have shown 
promising results compared to the existing offline speaker 
clustering, while running much more efficiently. 

Even though the DSC algorithm did not perform well in our 
evaluation, the notion of not having a threshold is still very 
attractive. Future efforts should focus on finding a more 
appropriate criterion that works better in the online clustering 
framework. 
 
Intuitively, offline speaker clustering should work better given 
that it has more information available than what online clustering 
has. It also has the opportunity to find the global opt imum. The 
test results show that there should be more rooms for 
improvement with offline speaker clustering. A hybrid system 
could be considered to use the online speaker clustering as the 
foreground process to produce clusters on the fly, while the 
offline clustering works in the background to globally refine the 
clustering results when there is sufficient data. 
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