
ONLINE SPEAKER CLUSTERING

Daben Liu, Francis Kubala

BBN Technologies
10 Moulton Street, Cambridge, MA 02138

dliu@bbn.com, fkubala@bbn.com

ABSTRACT

This paper describes a set of new algorithms that perform speaker
clustering in an online fashion. Unlike typical clustering
approaches, the proposed method does not require the presence of
all the data before performing clustering. The clustering decision
is made as soon as an audio segment is received. Being causal,
this method enables low-latency incremental speaker adaptation
in online speech-to-text systems. It also gives a speaker tracking
and indexing system the ability to label speakers with cluster ID
on the fly. We show that the new online speaker clustering
method yields better performance compared to the traditional
hierarchical speaker clustering. Evaluation metrics for speaker
clustering are also discussed.

1. INTRODUCTION

The goal of speaker clustering is to identify all speech segments
from the same speaker in an audio episode and assign them a
unique label. The true number of speakers involved in the
episode is usually unknown, making it a difficult problem. The
clustering output is commonly used in speaker adaptation for
speech recognition to collect sufficient data from the same
speaker [2][3][4][5]. The clustering information itself is very
useful in labeling and organizing speakers in speaker tracking or
audio indexing applications [1].

Existing clustering algorithms, such as the widely used
hierarchical clustering [2][3][4][5], typically require that all the
data be present before clustering can be performed. In these
algorithms, different numbers of clusters are hypothesized based
on local similarity or distance measures, e.g. building a
dendrogram. Then a global criterion is used to find the best
number of clusters. There are two drawbacks to this approach.
First, the process is non-causal. It cannot be used in an online
time-critical system or a system that requires incremental cluster
information. Secondly, trying different number of clusters is
computationally expensive and time consuming. In dendrogram-
based clustering, for example, the computational complexity
increases exponentially with the number of audio segments.

In this paper, we propose an online speaker clustering algorithm
that does not require the presence of all the data. The clustering
decision can be made whenever a new audio segment is received.
We start by a brief overview of a hierarchical speaker clustering
algorithm [2]. Then we introduce new algorithms for online
speaker clustering. We present further improvement to the
algorithms by studying the behavior of the decision criterion and
the distance measure. Finally, we present the evaluation metrics
and comparative results.

The input to the online speaker clustering application is usually
audio segments generated from automatic speaker segmentation,
which is not in the scope of this paper. Interested readers are
referred to [1][8] for more details. All the experiment results here
are reported on reference segmentations.

2. HIERARCHICAL SPEAKER CLUSTERING

In 1996, we developed an automatic speaker clustering algorithm
to improve the performance of unsupervised speaker adaptation
[2]. There were other approach [3][4][5] using different distance
measures and global criterion in determining number of clusters,
all of which fell into the hierarchical speaker clustering
framework.

Consider a collection of segments }{ n21 s,...,s,s=S with each si
denoting an audio segment that is represented by a sequence of
feature vectors. A hierarchical speaker clustering (HC) algorithm
can be described as follows:
Algorithm 1.1 (Hierarchical Clustering)
1. begin initialize c ← n
2. do
3. find the nearest pairs in the c clusters, say, si and sj
4. merge si and sj
5. calculate the global criterion, save to G(c)
6. c ← c - 1
7. until c = 1
8. return)(minarg cGc

c
← and the c clusters

9. end
where c is the hypothesized number of clusters and G(c) is the
global criterion to be minimized. There are two strengths in
hierarchical method. Not only is it able to find the closest pairs by
comparing distances among all the available segments, it can also
compare different clustering strategies globally to pick the best.
Neither of these advantages is available in the online case.

To calculate the distance, we used the generalized likelihood ratio
(GLR). A Gaussian distribution,),(iiN Σµ , is estimated from
the sequence of feature vectors of each audio segment si. The
GLR between ji ss , can be expressed as follows:

),;(),;(
),;(

),(
jjii

cc

LL
L

GLR
ΣΣ

Σ
=

µµ
µ

ji

c
ji ss

s
ss (1)

where sc is the union of si and sj, and L(.) is the likelihood of the
data given the model. We used within-cluster dispersion

1 The representation style for algorithms is adopted from Duda, et al. [7]

I - 5720-7803-7663-3/03/$17.00 ©2003 IEEE ICASSP 2003

➠ ➡

penalized by number of clusters for global clustering selection,
which is expressed as follows:

cNcG
c

j
jj ||)(

1
∑

=

Σ= (2)

where c is the number of clusters, Nj is the number of feature
vectors in cluster j, and jΣ is the covariance matrix of cluster j. |.|
denotes the determinant.

The HC algorithm worked well for unsupervised speaker
adaptation. It improves the word-error-rate as much as the hand-
labeled ideal clustering [2]. In this paper, we will examine the
usefulness of the same GLR distance and dispersion criterion for
online speaker clustering.

3. ONLINE SPEAKER CLUSTERING

3.1. Leader-follower clustering

Duda, et al, present a generic approach called leader-follower
clustering (LFC)[7], for k-means type clustering. The basic idea is
to either alter only the cluster centroid most similar to a new
pattern being presented so that the cluster is somewhat like the
new pattern, or make a new cluster with the new pattern if none
of the existing clusters are similar. The generic algorithm can be
described as follows:
Algorithm 2 (LFC)
1. begin initialize θη,
2. w1 ← s
3. do accept new s
4. j ← ||||minarg

' j'ws −
j

5. if || s - wj || < θ
6. then wj ← wj + η s (update wj)
7. else add new w ← s (create new cluster)
8. w ← w/||w||
9. until no more patterns
10. return w1, w2, …
11. end
where w is the collection of clusters, s is the input pattern, θ is
the threshold, and η is the learning rate.

This generic algorithm can be easily adapted for online speaker
clustering. Considering s as the audio segments, substituting the
||.|| operation with the GLR measures and updating wj by re-
estimating a new Gaussian distribution, we can directly use the
LFC algorithm to perform online speaker clustering. The
threshold θ is empirically estimated from held-out data. The
normalization step 8 is dropped as it is irrelevant in our case.

3.2. Dispersion-based speaker clustering

Data-dependent thresholds are not desirable because they reduce
the robustness of a system. Since we have a proven criterion for
model selection – the within-cluster dispersion G(c), we can
implement an online speaker clustering algorithm without the
need for a threshold. The proposed algorithm, which we call
dispersion-based speaker clustering (DSC) is as follows:
Algorithm 3 (DSC)
1. begin
2. w1 ← s
3. do accept new s

4. j ←),(minarg
' j'wsGLR

j

5. G1 ← G(w, wj{s}) "s is merged with wj"
6. G2 ← G(w, s) "s is made a new cluster"
7. if G1 < G2
8. then update wj with s
9. else add new w ← s (create new cluster)
10. until no more patterns
11. return w1, w2, …
12. end
From experiments we observed that DSC had a tendency to
underestimate the number of clusters. To see how effective the
dispersion criterion would be, we conducted an oracle experiment
where step 7 of Algorithm 3 was substituted by known conditions
from a reference set. In other words, when the input s truly
belong to an existing cluster, merge s to the cluster. Otherwise
create a new cluster with s. In every iteration, we still computed
the G1, G2. In Figure 1, we plot the difference, (G2-G1). Circle
(o) represents a merge situation in the reference, while Plus (+)
denotes new clusters. The horizontal line is drawn at 0. Thus, if
we were to use (G2-G1) as our criterion, any points below this
zero line would incur a creation of new cluster and any points
above would incur a merge. We can see that using dispersion
alone is not effective in splitting the two different events.

Figure 1. Dispersion difference plot for oracle experiment
(The audio segments are indexed in the incoming order. Four
audio files were processed sequentially, which is visible in the

figure as the four descending traces. The descending is due to the
penalty on number of clusters. With the increase of number of

hypothesized clusters, the difference (G2-G1) decreases.)

Figure 2. Minimum GLR plot for oracle experiment

I - 573

➡ ➡

From the oracle experiment, we observed that when some of the
minimum GLR distances were very high, it was almost certain
that new clusters should be created and vice versa for merging.
We plot the minimum GLR for every incoming audio segment in
Figure 2, again with the merging and creating events labeled by
circles and plus. It is clear that one threshold, as in the LFC case,
is not very successful in dividing the two different events.
However, decisions could be made with high confidence at the
upper and lower regions as indicated in the figure.

3.3. Hybrid speaker clustering

The above observation inspired a hybrid algorithm (HSC) that
utilized both the dispersion and the GLR threshold. The
algorithm is presented as follows:
Algorithm 4 (HSC)
1. begin initialize LU θθ ,
2. w1 ← s
3. do accept new s
4. j ←),(minarg

' j'wsGLR
j

5. Dj ← min GLR(s, wj)
6. G1 ← G(w, wj{s}) "s is merged with wj"
7. G2 ← G(w, s) "s is made a new cluster"
8. if Dj < Lθ
9. then update wj with s
10. else if Dj > Uθ
11. then add new w ← s (create new cluster)
13. else if G1 < G2
14. then update wj with s
12. else add new w ← s (create new cluster)
13. until no more patterns
14. return w1, w2, …
15. end
where LU θθ , are the upper and lower thresholds that define the
high confidence regions. The re-introduction of thresholds are
somewhat undesirable. However, since they only work at high
confidence regions, they are less sensitive to data and thus more
robust. The low confidence region in Figure 2 is still handled by
dispersion analysis. Note that when LU θθ = , HSC becomes
LFC. When −∞→∞→ LU and θθ , HSC becomes the DSC
algorithm.

4. EXPERIMENT RESULTS AND EVALUATION

We used the four half-hour broadcast-news episodes, named as
file1, fil2, file3 and file4, of the NIST Hub4 1996 evaluation set
as our development data to optimize the thresholds. The
evaluation data was taken from the Hub4 1998 evaluation set,
which consists of two 1.5-hour broadcast news episodes.

4.1. Evaluation metrics

We selected three commonly used methods – the misclassification
rate, cluster purity, and Rand Index [6], which are described as
follows:

Consider N speakers that are clustered into C groups, where nij is
the number of segments from speaker j that are labeled with
cluster i. Assume that ijn has ijf speech frames.

Given a one-to-one speaker-to-cluster mapping, any segment
from speaker j that is not mapped is considered an error, the
summation of which is denoted as ej. Then

Misclassification rate = ∑∑∑
= ==

C

i

N

j
ij

N

j
j ne

1 11

 (3)

We define the final mapping as the one that minimizes the
misclassification rate. Note that we calculate the error rate at the
segment level, where segments with different lengths are treated
equally. The insensitivity to length is desirable when speaker
clusters are the end products of the application. For example, in a
speaker retrieval application, any incorrectly retrieved segment
should be considered as equally undesirable regardless of the
duration of the segment. Another advantage of this error measure
is that it provides a clear map of error distribution that is useful
for error analysis and debugging.

Cluster purity is calculated at the frame level. For each cluster i,
calculate the pure frames fi by adding up the speech frames of the
majority speaker in cluster i.

Cluster purity = ∑∑∑
= ==

C

i

N

j
ij

C

i
i ff

1 11

 (4)

Cluster purity is of great interest when speaker clustering is used
for speaker adaptation, which concerns more about the total
amount of correctly classified data.

Rand Index gives the probability that two randomly selected
segments are from the same speaker but hypothesized in different
clusters, or the two segments are in the same cluster but from
different speakers. Let •in be the number of segments in cluster i,
and jn• be the number of segments from speaker j,

 Rand Index = 







−+ ∑∑∑∑

= ==
•

=
• 2

])(
2
1[

1 1

2

1

2

1

2 n
nnn

C

i

N

j
ij

N

j
j

C

i
i (5)

Rand Index is a theoretical measure that has been widely used for
comparing partitions [6]. The lower the index, the higher the
agreement is between two partitions. However, it does not
provide any information on how the partitions are distributed and
how the two partitions are related.

4.2. Experiment results

The thresholds for LFC and HSC were tuned on Hub4 1996 test
set by minimizing the overall misclassification errors. Hub4 1998
data set provides the fair results. All the results were compared to
the hierarchical clustering (HC) performance. In Table 1, we
compare the hypothesized number of clusters from each
algorithm to the true number of speakers in each episode.

clusters
Episode

true #
speakers HC LFC DSC HSC

file1 7 8 9 10 10
file2 13 15 17 13 17
file3 15 16 18 15 18
file4 20 16 22 17 22
eval98-1 79 45 69 39 67
eval98-2 89 90 92 58 91

Table 1. Comparison of number of speakers and clusters

I - 574

➡ ➡

All algorithms are able to hypothesize reasonable number of
clusters on the Hub4 1996 set. On the fair test, LFC and HSC
perform better than HC and DSC. DSC significantly
underestimated number of clusters on both Hub4 1998 episodes.

Table 2 shows the clustering performance of different algorithms
using the three evaluation metrics described in 4.1. In general,
DSC performed the worst in all measures, suggesting that within-
cluster dispersion measure alone might not be a good choice for
online speaker clustering. Both LFC and HSC yielded
comparable or better performance compared to the baseline HC.
Even though LFC performed superior on file1, the superiority did
not hold up on other episodes. HSC, however, performed
consistently well on all data sets suggesting that HSC is more
robust than LFC.

4.3. Run-time efficiency

The computational complexity for hierarchical speaker clustering
increases exponentially with number of audio segments, no matter
how many speakers there are in the data. However, the
complexity for proposed online speaker clustering algorithms is
linear to the number of input audio segments. We ran HC and
HSC on a series of test sets that contain from 80 to 1000
segments. The elapsed-time difference is shown in Figure 3. The
elapsed-time difference between online and offline clustering
starts to become significant at around 200 segments.

Figure 3. System elapsed-time vs. number of segments

5. CONCLUSION AND FUTURE WORK

We have developed three algorithms for online speaker
clustering. All algorithms have shown the ability to automatically
find reasonable number of clusters. LFC and HSC have shown
promising results compared to the existing offline speaker
clustering, while running much more efficiently.

Even though the DSC algorithm did not perform well in our
evaluation, the notion of not having a threshold is still very
attractive. Future efforts should focus on finding a more
appropriate criterion that works better in the online clustering
framework.

Intuitively, offline speaker clustering should work better given
that it has more information available than what online clustering
has. It also has the opportunity to find the global opt imum. The
test results show that there should be more rooms for
improvement with offline speaker clustering. A hybrid system
could be considered to use the online speaker clustering as the
foreground process to produce clusters on the fly, while the
offline clustering works in the background to globally refine the
clustering results when there is sufficient data.

ACKNOWLEDGEMENT

This work was supported in part by the Defense Advanced
Research Projects Agency under contract N66001-00-C-8008.
The views and findings contained in this material are those of the
authors and do not necessarily reflect the position or policy of the
Government and no official endorsement should be inferred.

REFERENCES

1. Kubala, F., Sean Colbath, Daben Liu, Amit Srivastava, John
Makhoul, "Integrated Technologies for Indexing Spoken
Language," Communications of the ACM, Vol. 43, No. 2,
February 2000

2. Jin, H., F. Kubala, R. Schwartz, “Automatic Speaker
Clustering,” Proceedings of the DARPA Speech Recognition
Workshop, pp. 108-111, February 1997

3. Siegler, M., et al, “Automatic Segmentation Classification
and Clustering of Broadcast News Audio,” Proceedings of
the DARPA Speech Recognition Workshop, pp. 97-99,
February 1997

4. Hain, T., et al, “Segment Generation and Clustering in the
HTK Broadcast News Transcription System,” Proceedings
of the DARPA Broadcast News Transcription and
Understanding Workshop, Lansdowne , VA, February 1998

5. Chen, S., P. Gopalakrishnan, “Speaker, Environment, and
Channel Change Detection and Clustering via the Bayesian
Information Criterion,” Proceedings of the DARPA
Broadcast News Transcription and Understanding
Workshop, Lansdowne, VA, February 1998

6. Hubert, L., “Comparing Partitions,” Journal of
Classification, Vol 2, pp 193-218, 1985

7. Duda, R., P. Hart, D. Stork, "Pattern Classification," John
Wiley & Sons, Inc., Second Edition, 2001

8. Liu, D., F. Kubala, “Fast Speaker Change Detection for
Broadcast News Transcription and Indexing,”
EUROSPEECH’99, Budapest, Hungary, Volume 3, Page
1031-1034, September 5-9, 1999

Misclassification rate (%) Cluster Purity (%) Rand Index (%)
Episodes # segments HC LFC DSC HSC HC LFC DSC HSC HC LFC DSC HSC
file1 81 5 2 6 6 99.8 100.0 98.6 99.9 2.6 0.1 3.1 1.1
file2 106 21 11 14 10 96.3 98.1 90.9 98.2 4.5 0.9 1.9 0.8
file3 101 11 13 26 10 99.1 97.3 83.3 99.7 3.1 3.6 5.9 2.9
file4 92 30 26 39 23 92.4 95.0 76.0 95.6 5.3 5.2 6.4 4.5
eval98-1 399 24 27 31 28 89.7 94.4 78.6 93.1 1.5 1.4 1.6 1.2
eval98-2 428 39 32 40 29 84.7 89.2 77.1 89.7 0.9 0.8 1.1 0.7

Table 2. Speaker clustering error analysis

I - 575

➡ ➠

