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ABSTRACT

In this paper we suggest that rather than modeling speaker
mismatch as an affine transform of the entire feature vector, it
can be modeled by an affine transform of the static coefficients
with additional constraints imposed by the tempora
relationships of the streams of coefficients. This results in the
different streams sharing the same rotation matrix, and thus
reduces the complexity and memory requirements for speaker
adaptation, as well as minimizes the adaptation data
requirements. We present the solution for the case where
temporal structure constrained transforms (TSCT) are optimized
using the maximum likelihood criterion. The experiments
presented in the paper show that with the proposed approach,
the same accuracy after adaptation for the Wall Street Journa
(WSJ) task can be achieved by using only 60% of the total
number of transformation parameters that it would require if
conventiona block-diagonal transformation is used. In addition,
TSCT provides better recognition accuracy when there is only a
very limited amount of adaptation data.

1. INTRODUCTION

It is well known that speaker-independent (SI) automatic speech
recognition (ASR) systems, despite the steady improvements
generated over recent years, still have error rates that are much
larger than corresponding speaker-dependent (SD) systems [1].
However, it takes large amounts of data to properly estimate the
model parameters of an ASR system, and it is therefore in most
cases not possible to collect sufficient SD data to create such
models. More commonly, data from a large pool of different
speakers are used to generate Sl acoustic models. Even though
some speskers experience very good performance with such
models, a large variation in accuracy can be expected in the
population, depending on how well a particular user's voice
characteristics (including both physiological and sociological
aspects) are represented in the training data set.

A common solution to this speaker mismatch problem is to
employ speaker adaptation techniques. These techniques fall
mainly into three categories which include maximum a posteriori
(MAP) adaptation [2] [3], transformation based adaptation [4]
[5] [6] and speaker clustering [7] [8]. Such methods modify the
parameters of the initia acoustic models, using only small
amounts of speaker specific data, to generate the speaker-adapted
(SA) models. The goa is to approach the accuracy that can be
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achieved using SD ASR systems, while at the same time
minimizing the training load on a user.

One of the most successful approaches to speaker adaptation in
the hidden Markov model (HMM) framework is the maximum
likelihood linear regression (MLLR) [6]. The most important
feature of an HMM s the probability density functions (pdfs)
that specify the state output distributions. These are typically
Gaussian mixture models. In MLLR, the mean vectors of the
Gaussians are grouped into clusters, and each mean vector (W) in
acluster is adapted using an affine transformation of the form:

p=Tp+p @

By carefully selecting the number of clusters to be used, MLLR
can not only help to create good SA modes when a sufficient
amount of adaptation data has been collected, but aso yield
improvements when only small amounts of data are available. In
this case, the clustering approach will help adapting mean vectors
for which there are no data avallable in the adaptation set.
However, with smal amounts of data, the number of
transformation parameters that can be rdiably estimated will
ultimately limit the extent of the performance improvement. In
this paper we present a procedure that exploits the temporal
relationship that is typically used in ASR feature vectors. The
objective of this approach is to reduce the equivalent
dimensionality of the affine transformations. We will show how
this can help in reducing the computational complexity, as well
as increasing the adaptation rate. The latter is possible because
fewer parameters will be required to specify each transformation.

In the next section we will develop the solution for this temporal
structure constrained transformation (TSCT) under the maximum
likelihood (ML) criterion. In section 3, we will then report some
experimental results with this novel method for the Wall Street
Journal (WSJ) database, and compare them to a standard MLLR
approach. The results are discussed in section 4 while our
conclusions are found in section 5.

2. TEMPORAL STRUCTURE
CONSTRAINED TRANSFORMATION

The feature vectors typically used in ASR consist of a stream of
static coefficients, augmented by their individual 1% order and 2™
order time derivatives. It is often assumed that there is no cross-
correlation among these streams of coefficients, and this is
commonly exploited to reduce the complexity in transformation-
based adaptation. The implication of this assumption is that the
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rotation matrix is reduced to a block-diagonal form, and thus a
reduced number of adaptation parameters need to be estimated.

Our approach is different, in that rather than modeling speaker
mismatch as an affine transform of the entire feature vector, it is
modeled by an affine transform of the static coefficients. The
additional constraints are then imposed by the temporal
relationships of the streams of coefficients. This results in the
different streams sharing the same rotation matrix, and therefore
we can further reduce the number of non-zero elements in a
transformation to onethird of that of a block-diagonal
transformation. This reduces the complexity and memory
requirements for the adaptation, as well as minimizes the
adaptation data requirements.

2.1 Definition of TSCT

For an n-dimensional input feature vector X, its output vector (Y)
after transformation is given by:

Y=TX+p @

The transformation is thus defined by the n x n rotation matrix
I' and then x 1 bias vector f§ .

We now assume that the feature vector consists of the static
coefficients (x), augmented by their individual 1% order (X ) and
2 order (X) time derivatives. We can write this
asX =[x" x" x"]" . Assuming that speaker mismatch can be
modeled by an affine transform of the static coefficients, these
coefficients are transformed to:

y =Ax+b (©)]

where A is a n/3 x n/3 rotation matrix and b isan/3 x 1 bias
vector. We can now introduce the constraints imposed by the
temporal relationships between the streams of coefficients. It
follows from equation (3) that:

dy/dt =Adx/dt=Ax 4
d?y/dt? =Ad?x/dt? =A% (5)
The TSCT transformation can thus be written:

y AXx+b A 0 Ofx]| |b
Y=|y|=| Ax |=|0 A Ofx|+|0 (6)

y AX 0 0 Alx| |0

and its rotation matrix is block-diagona. By contrast, the
standard block-diagona transformation is reached by assuming
that speaker mismatch can be modeed by an éffine
transformation of the entire feature vector and a the same time
assuming that the cross-correlation between the streams of the

feature vector is zero. For this conventional case, the
transformation can be written:

y Ay 0 0 |x by
Y=|y|=| 0 Az O |Xx|+|b; )
| |0 0 As|x| |bs

In this case, each A, is of dimension n/3 x n/3, while each of the
b; isof dimensonn/3 x 1.

2.2 Estimation of TSCT

The genera criterion function to be maximised in MLLR for
estimating a transformation is given by [6]:

J = —%i 2 k) (Qt -I'p, ‘B)FBk (9t ~Ip, _B)]
t=1K00 8
13 5 10 o, - Wi, R, o - i,

2¢=10

where T is the total number of feature vectors in an adaptation
data set, Q isthe set of Gaussians within a regression class, o, is
the feature vector at timet, y(k) is the posterior probability of o
occupying the k-th Gaussian at time t, W is the mean vector of
the k-th Gaussian and Ry is the corresponding diagona
covariance matrix, I is the rotation matrix of the transform, f3 is

the bias vector, W =[I" B] and i’ =[u" 1].

In order to simplify the subsequent eguations, we add a
superscript (i) to a vector or a matrix to identify the
corresponding stream of coefficients that it is referred to. For
example, x? refers to the static coefficients, x? refers to delta
coefficients (1% order time derivatives) and so on. By imposing
the temporal structure constraints, equation (8) can be re-written
as

4 3 . ! ’ . ]
1223y yt(k){z(o[")—Wﬁk(")TRk("(q"’—wak“)} (©)
t=1kQ i=1

where

o _(m® s o | m®] e n®
n = 1 v R = 0 T 0 , W =[A b].

To further simplify the notation, we introduce

TN )=~ 0)
Vi = 20(k) and o™’ = 3y (K)o
t=1 t=1

2.2.1 Full-rank A matrix

In this case, the matrix A is assumed to have full rank of n/3 and
therefore the TSCT is block-diagonal. By differentiating the
apove criterion function in equation (9) with respect to the
transform matrix W and equating the resultant matrix equation to
0, we obtain the following equation system:

3 = ivariyT _ 3 . o vainT
> YR58 = Ty > ROW O (10)
kOQi=1 kOQ i=1

To dlow more flexibility in this framework, we now introduce a
scaling factor for the occupation count corresponding to each
stream of a feature vector, i.e., y; (k) is multiplied by A0 The
equation system can then be written as:
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3 . = iy T - 3 ; v T
> Z/](I)Rk(l)ok(l)uﬂ) - Zykz/](l)Rk(l)W llk(')us) (11)
kOQi=1 kOQ =1
The above equation system can be solved row-by-row and the
solution is given by:

3 . . _ . ] _ 3 . N
%Q SO (130 (Ha0" :W(j)[k%ykz/ﬂ')rk(')( D0 (12)
i=1 i=1

where 1, () is thej-th diagonal dement of R, 5,0 (j) isthej-
th element of G, ") and W(j) isthe j-th row of W.

Note that if we choose A® =1? =)@ | the solution to this
equation system provides the maximum likelihood (ML) solution
to the TSCT optimisation problem. If we choose to let these
scaling factors have different values, we will deviate from this
solution. However, this framework increases the flexibility of the
approach by allowing the contribution from the different
parameter sets to be weighted differently. It would for instance
give us the opportunity to calculate the transform based only on

the static coefficients by setting A® =1and 4@ = 1® =0, thus
incorporating the technique suggested in [9] as aspecid case.

2.2.2 Diagonal A matrix

The solution in equation (12) can be further simplified if we
assume that the A matrix is diagonal. Let a(j) be the j-th diagonal
element of A and b(j) be the j-th element of the bias vector b,
similar derivation from equation (9) for diagonal A matrix gives:

3 . ) -
[ %P (o () A2 Tn® (o) =
KQi= KQ

_ 3 . . _
SOl ? 2 %)ykrk‘”(j)/&(j) (13)

[a(j) b(j)] KR i )
DAL 10) N S Y Al()
K KX

From equation (13), the values of a(j) and b(j) can be calculated
accordingly for each element index j.

3. EXPERIMENTS

3.1 Experimental Setup

The Wall Street Journa (WSJ) database [10] was used in the
adaptation experiments. This task has a 5000-word vocabulary,
and contains 10 non-native speakers of American English. The
front-end process extracted 12 mel-frequency cepstral
coefficients (MFCC) and alog-energy coefficient for every 10ms
of speech with a 25-ms Hamming window. This static stream of
coefficients was then appended with its corresponding 1% order
and 2™ order time derivative coefficients to form a full size
feature vector. The speaker-independent (SI) models were trained
from the SI84 subset (84 speakers from WSJ0). Triphone HMMs
were used and the final SI model set contained about 10K
Gaussians after state tying. The adaptation and test experiments
were based on the Spoke 3 evaluation data set from the 1993

ARPA CSR evduation. The average duration of each utterance is
approximately 8 seconds. Recognition was based on a Motorola
proprietary speech recognizer with the standard WSJ bigram
language model. A regression tree was built to cluster the
individual Gaussians in order to better facilitate the use of
multiple transformations when the amount of adaptation data
increases.

3.2 Results

Supervised adaptation experiments with various amounts of
adaptation utterances were performed for the evaluation.
Preliminary experiments testing various scaling factor values
reveded that the recognition accuracy obtained by using the

TSCT was maximized for AP =@ = ® | and accordingly

settings of A® =1@ =)@ =1 were employed in the
experiments reported here for using TSCT. The average word
accuracy after adaptation for up to 10 utterances/speaker for each
of the different types of transformations is shown in Figure 1.
Also included in the figure is the Sl recognition accuracy as a
referenceline.
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Figure 1:- Average word recognition accuracy (%)
across 10 speskers for triphone models with supervised
adaptation using block-diagona (BD), TSCT block-
diagona (BDSC), diagonal (Diag), TSCT diagond
(DiagSC) transformations, and the Sl result (SI)

From the above experimenta results, it is evident that the use of
TSCT is capable of producing similar accuracy to other
transform types, if not better. More than that, it is achieved by
using considerably fewer transformation parameters. This is
illustrated in Figure 2 which shows that the use of block-diagonal
TSCT's requires the least amount of total transformation
parameters for a given recognition accuracy. Here the total
number of transformation parameters is calculated as the number
of transformations employed in an adaptation times the number
of free parameters in a transformation. The potential memory
savings of using TSCT's are clearly evident. Also it should be
noted that the number of adaptation utterances used can be up to
40 in the figure. In the case of using block-diagonal TSCT's, the
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average word accuracy isimproved to 83.7% when 40 adaptation
utterances from each speaker are provided. This improvement is
achieved by using only 60% of the tota number of
transformation parameters that it would require if conventional
block-diagonal transformation is used.
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Figure 2:- Average word recognition accuracy (%) after
supervised adaptation plotted against the average tota
number of free parameters for each transform type:
block-diagonal (BD), TSCT block-diagona (BDSC),
diagonal (Diag), and TSCT diagond (DiagSC)

4. DISCUSSION

The results from Figure 1 indicate that initial adaptation rate can
be improved over the use of conventional block-diagonal
transforms by adding the temporal constraints. Only block-
diagonal TSCT can achieve a better word accuracy than that of
the Sl baseline when there is only one adaptation utterance. On
the other hand, its accuracy matches that of the conventional
block-diagonal transformation when more adaptation data are
available. Thisis significant in view of the considerably smaller
number of free parameters to be estimated. As expected, block-
diagonal transformation performs a little better than diagonal
transformation in terms of word accuracy when there are more
adaptation data.

Thelinesin Figure 2 clearly demonstrate the superiority of TSCT
in terms of reducing transformation parameters while providing
almost the same or better improvement in recognition accuracy
than the conventiona approach. The results indicate that the use
of temporal relationships among the streams of feature vector can
eliminate some of the redundancy ignored in assuming that the
streams are independent when using conventional block-diagonal
transformation. Comparing the performance of block-diagonal
TSCT with that of the diagonal TSCT, we can learn that rotation
of within-stream feature space is necessary in order to better
model the mismatch in different voice characteristics.

While the derivation of the TSCT was motivated by the desire to
exploit the temporal relationships of different streams of feature

vector to reduce redundancy in modeling speaker mismatch, it
can also be viewed as a specific way of doing parameter tying for
a transformation. It remains to see if we can generalize this
transformation parameter tying framework to further improve the
adaptation performance.

5. CONCLUSION

Rapid adaptation on very limited datais a difficult task for which
there are few improvements on conventional approaches. It is
during the first few utterances that a user will have their critical
initial experience of a particular speech recognition system.
Thus, it is claimed that the TSCT approach provides a strong
advantage. In particular, we have demonstrated the performance
improvements of the TSCT approach on the WSJ task, in terms
of both memory storage and accuracy after adaptation. The
experimental results verified that temporal structure of feature
vectors can be used to reduce the complexity of a transformation
and a the same time can enhance the capability of a
transformation to capture different voice characteristics.
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