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ABSTRACT 
In this paper we suggest that rather than modeling speaker 
mismatch as an affine transform of the entire feature vector, it 
can be modeled by an affine transform of the static coefficients 
with additional constraints imposed by the temporal 
relationships of the streams of coefficients. This results in the 
different streams sharing the same rotation matrix, and thus 
reduces the complexity and memory requirements for speaker 
adaptation, as well as minimizes the adaptation data 
requirements. We present the solution for the case where 
temporal structure constrained transforms (TSCT) are optimized 
using the maximum likelihood criterion. The experiments 
presented in the paper show that with the proposed approach,  
the same accuracy after adaptation for the Wall Street Journal 
(WSJ) task can be achieved by using only 60% of the total 
number of transformation parameters that it would require if 
conventional block-diagonal transformation is used. In addition, 
TSCT provides better recognition accuracy when there is only a 
very limited amount of adaptation data. 

 

1. INTRODUCTION 

It is well known that speaker-independent (SI) automatic speech 
recognition (ASR) systems, despite the steady improvements 
generated over recent years, still have error rates that are much 
larger than corresponding speaker-dependent (SD) systems [1]. 
However, it takes large amounts of data to properly estimate the 
model parameters of an ASR system, and it is therefore in most 
cases not possible to collect sufficient SD data to create such 
models. More commonly, data from a large pool of different 
speakers are used to generate SI acoustic models. Even though 
some speakers experience very good performance with such 
models, a large variation in accuracy can be expected in the 
population, depending on how well a particular user’s voice 
characteristics (including both physiological and sociological 
aspects) are represented in the training data set. 

A common solution to this speaker mismatch problem is to 
employ speaker adaptation techniques. These techniques fall 
mainly into three categories which include maximum a posteriori 
(MAP) adaptation [2] [3], transformation based adaptation [4] 
[5] [6] and speaker clustering [7] [8]. Such methods modify the 
parameters of the initial acoustic models, using only small 
amounts of speaker specific data, to generate the speaker-adapted 
(SA) models. The goal is to approach the accuracy that can be 

achieved using SD ASR systems, while at the same time 
minimizing the training load on a user.  

One of the most successful approaches to speaker adaptation in 
the hidden Markov model (HMM) framework is the maximum 
likelihood linear regression (MLLR) [6]. The most important 
feature of an HMM is the probability density functions (pdfs) 
that specify the state output distributions. These are typically 
Gaussian mixture models. In MLLR, the mean vectors of the 
Gaussians are grouped into clusters, and each mean vector (µµµµ) in 
a cluster is adapted using an affine transformation of the form: 

�����
+=ˆ    (1) 

By carefully selecting the number of clusters to be used, MLLR 
can not only help to create good SA models when a sufficient 
amount of adaptation data has been collected, but also yield 
improvements when only small amounts of data are available. In 
this case, the clustering approach will help adapting mean vectors 
for which there are no data available in the adaptation set. 
However, with small amounts of data, the number of 
transformation parameters that can be reliably estimated will 
ultimately limit the extent of the performance improvement. In 
this paper we present a procedure that exploits the temporal 
relationship that is typically used in ASR feature vectors. The 
objective of this approach is to reduce the equivalent 
dimensionality of the affine transformations. We will show how 
this can help in reducing the computational complexity, as well 
as increasing the adaptation rate. The latter is possible because 
fewer parameters will be required to specify each transformation. 

In the next section we will develop the solution for this temporal 
structure constrained transformation (TSCT) under the maximum 
likelihood (ML) criterion. In section 3, we will then report some 
experimental results with this novel method for the Wall Street 
Journal (WSJ) database, and compare them to a standard MLLR 
approach. The results are discussed in section 4 while our 
conclusions are found in section 5. 

2. TEMPORAL STRUCTURE 
CONSTRAINED TRANSFORMATION 

The feature vectors typically used in ASR consist of a stream of 
static coefficients, augmented by their individual 1st order and 2nd 
order time derivatives. It is often assumed that there is no cross-
correlation among these streams of coefficients, and this is 
commonly exploited to reduce the complexity in transformation-
based adaptation. The implication of this assumption is that the 
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rotation matrix is reduced to a block-diagonal form, and thus a 
reduced number of adaptation parameters need to be estimated.  

Our approach is different, in that rather than modeling speaker 
mismatch as an affine transform of the entire feature vector, it is 
modeled by an affine transform of the static coefficients. The 
additional constraints are then imposed by the temporal 
relationships of the streams of coefficients. This results in the 
different streams sharing the same rotation matrix, and therefore 
we can further reduce the number of non-zero elements in a 
transformation to one-third of that of a block-diagonal 
transformation. This reduces the complexity and memory 
requirements for the adaptation, as well as minimizes the 
adaptation data requirements. 

2.1 Definition of TSCT 

For an n-dimensional input feature vector X, its output vector (Y) 
after transformation is given by: �

X
�

Y +=     (2) 

The transformation is thus defined by the n x n rotation matrix �
and the n x 1 bias vector � . 

We now assume that the feature vector consists of the static 
coefficients (x), augmented by their individual 1st order ( x� ) and 
2nd order ( x�� ) time derivatives. We can write this 

as TTTT ][ xxxX ���= . Assuming that speaker mismatch can be 

modeled by an affine transform of the static coefficients, these 
coefficients are transformed to:  

bAxy +=     (3) 

where A is a n/3 x n/3 rotation matrix and b is a n/3 x 1 bias 
vector. We can now introduce the constraints imposed by the 
temporal relationships between the streams of coefficients. It 
follows from equation (3) that: 

xAxAy �== dtddtd //    (4) 

xAxAy ��== 2222 // dtddtd   (5) 

The TSCT transformation can thus be written: 
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and its rotation matrix is block-diagonal. By contrast, the 
standard block-diagonal transformation is reached by assuming 
that speaker mismatch can be modeled by an affine 
transformation of the entire feature vector and at the same time 
assuming that the cross-correlation between the streams of the 
feature vector is zero. For this conventional case, the 
transformation can be written: 
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In this case, each Ai is of dimension n/3 x n/3, while each of the 
bi is of dimension n/3 x 1. 

2.2 Estimation of TSCT 

The general criterion function to be maximised in MLLR for 
estimating a transformation is given by [6]: 
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where τ is the total number of feature vectors in an adaptation 
data set, Ω is the set of Gaussians within a regression class, ot is 
the feature vector at time t, γt(k) is the posterior probability of ot 
occupying the k-th Gaussian at time t, µµµµk is the mean vector of 
the k-th Gaussian and Rk is the corresponding diagonal 
covariance matrix, ΓΓΓΓ is the rotation matrix of the transform, ββββ is 

the bias vector, W = [ΓΓΓΓ  ββββ]  and  ]1[~ TT 

 = . 

In order to simplify the subsequent equations, we add a 
superscript (i) to a vector or a matrix to identify the 
corresponding stream of coefficients that it is referred to. For 
example, x(1) refers to the static coefficients, x(2) refers to delta 
coefficients (1st order time derivatives) and so on. By imposing 
the temporal structure constraints, equation (8) can be re-written 
as: 
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To further simplify the notation, we introduce 
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2.2.1 Full-rank A matrix 

In this case, the matrix A is assumed to have full rank of n/3 and 
therefore the TSCT is block-diagonal. By differentiating the 
above criterion function in equation (9) with respect to the 
transform matrix W and equating the resultant matrix equation to 
0, we obtain the following equation system: 
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To allow more flexibility in this framework, we now introduce a 
scaling factor for the occupation count corresponding to each 

stream of a feature vector, i.e., )(ktγ is multiplied by )(iλ . The 

equation system can then be written as: 
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The above equation system can be solved row-by-row and the 
solution is given by: 
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where rk
(i)(j) is the j-th diagonal element of Rk

(i) , )()( jo i
k is the j-

th element of )(i
ko and W(j) is the j-th row of W. 

 
 

Note that if we choose )3()2()1( λλλ == , the solution to this 
equation system provides the maximum likelihood (ML) solution 
to the TSCT optimisation problem. If we choose to let these 
scaling factors have different values, we will deviate from this 
solution. However, this framework increases the flexibility of the 
approach by allowing the contribution from the different 
parameter sets to be weighted differently. It would for instance 
give us the opportunity to calculate the transform based only on 

the static coefficients by setting 1)1( =λ and 0)3()2( == λλ , thus 
incorporating the technique suggested in [9] as a special case. 

2.2.2 Diagonal A matrix 

The solution in equation (12) can be further simplified if we 
assume that the A matrix is diagonal. Let a(j) be the j-th diagonal 
element of A and b(j) be the j-th element of the bias vector b, 
similar derivation from equation (9) for diagonal A matrix gives: 
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From equation (13), the values of a(j) and b(j) can be calculated 
accordingly for each element index j. 

3. EXPERIMENTS 

3.1 Exper imental Setup 

The Wall Street Journal (WSJ) database [10] was used in the 
adaptation experiments. This task has a 5000-word vocabulary, 
and contains 10 non-native speakers of American English. The 
front-end process extracted 12 mel-frequency cepstral 
coefficients (MFCC) and a log-energy coefficient for every 10ms 
of speech with a 25-ms Hamming window. This static stream of 
coefficients was then appended with its corresponding 1st order 
and 2nd order time derivative coefficients to form a full size 
feature vector. The speaker-independent (SI) models were trained 
from the SI84 subset (84 speakers from WSJ0). Triphone HMMs 
were used and the final SI model set contained about 10K 
Gaussians after state tying. The adaptation and test experiments 
were based on the Spoke 3 evaluation data set from the 1993 

ARPA CSR evaluation. The average duration of each utterance is 
approximately 8 seconds. Recognition was based on a Motorola 
proprietary speech recognizer with the standard WSJ bigram 
language model.  A regression tree was built to cluster the 
individual Gaussians in order to better facilitate the use of 
multiple transformations when the amount of adaptation data 
increases. 

3.2 Results 

Supervised adaptation experiments with various amounts of 
adaptation utterances were performed for the evaluation.  
Preliminary experiments testing various scaling factor values 
revealed that the recognition accuracy obtained by using the 

TSCT was maximized for )3()2()1( λλλ == , and accordingly 

settings of 1)3()2()1( === λλλ  were employed in the 
experiments reported here for using TSCT. The average word 
accuracy after adaptation for up to 10 utterances/speaker for each 
of the different types of transformations is shown in Figure 1. 
Also included in the figure is the SI recognition accuracy as a 
reference line. 
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Figure 1:- Average word recognition accuracy (%) 
across 10 speakers for triphone models with supervised 
adaptation using block-diagonal (BD), TSCT block-
diagonal (BDSC), diagonal (Diag), TSCT diagonal 
(DiagSC) transformations, and the SI result (SI ) 

From the above experimental results, it is evident that the use of 
TSCT is capable of producing similar accuracy to other 
transform types, if not better. More than that, it is achieved by 
using considerably fewer transformation parameters. This is 
illustrated in Figure 2 which shows that the use of block-diagonal 
TSCT’s requires the least amount of total transformation 
parameters for a given recognition accuracy. Here the total 
number of transformation parameters is calculated as the number 
of transformations employed in an adaptation times the number 
of free parameters in a transformation. The potential memory 
savings of using TSCT’s are clearly evident. Also it should be 
noted that the number of adaptation utterances used can be up to 
40 in the figure. In the case of using block-diagonal TSCT’s, the 
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average word accuracy is improved to 83.7% when 40 adaptation 
utterances from each speaker are provided. This improvement is 
achieved by using only 60% of the total number of 
transformation parameters that it would require if conventional 
block-diagonal transformation is used. 
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Figure 2:- Average word recognition accuracy (%) after 
supervised adaptation plotted against the average total 
number of free parameters for each transform type: 
block-diagonal (BD), TSCT block-diagonal (BDSC), 
diagonal (Diag), and TSCT diagonal (DiagSC) 

4. DISCUSSION 

The results from Figure 1 indicate that initial adaptation rate can 
be improved over the use of conventional block-diagonal 
transforms by adding the temporal constraints. Only block-
diagonal TSCT can achieve a better word accuracy than that of 
the SI baseline when there is only one adaptation utterance. On 
the other hand, its accuracy matches that of the conventional 
block-diagonal transformation when more adaptation data are 
available. This is significant in view of the considerably smaller 
number of free parameters to be estimated. As expected, block-
diagonal transformation performs a little better than diagonal 
transformation in terms of word accuracy when there are more 
adaptation data.  

The lines in Figure 2 clearly demonstrate the superiority of TSCT 
in terms of reducing transformation parameters while providing 
almost the same or better improvement in recognition accuracy 
than the conventional approach. The results indicate that the use 
of temporal relationships among the streams of feature vector can 
eliminate some of the redundancy ignored in assuming that the 
streams are independent when using conventional block-diagonal 
transformation. Comparing the performance of block-diagonal 
TSCT with that of the diagonal TSCT, we can learn that rotation 
of within-stream feature space is necessary in order to better 
model the mismatch in different voice characteristics.  

While the derivation of the TSCT was motivated by the desire to 
exploit the temporal relationships of different streams of feature 

vector to reduce redundancy in modeling speaker mismatch, it 
can also be viewed as a specific way of doing parameter tying for 
a transformation. It remains to see if we can generalize this 
transformation parameter tying framework to further improve the 
adaptation performance. 

5. CONCLUSION 

Rapid adaptation on very limited data is a difficult task for which 
there are few improvements on conventional approaches. It is 
during the first few utterances that a user will have their critical 
initial experience of a particular speech recognition system. 
Thus, it is claimed that the TSCT approach provides a strong 
advantage. In particular, we have demonstrated the performance 
improvements of the TSCT approach on the WSJ task, in terms 
of both memory storage and accuracy after adaptation. The 
experimental results verified that temporal structure of feature 
vectors can be used to reduce the complexity of a transformation 
and at the same time can enhance the capability of a 
transformation to capture different voice characteristics. 
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