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ABSTRACT

In this paper, a concatenated "super" string model based
minimum classification error (MCE) model adaptation approach
is described. We show that the error rate minimization in the
proposed approach can be formulated into maximizing a special
ratio of two positive functions. The proposed string model is
used to derive the growth transform based error rate
minimization for MCE linear regression (MCELR). It provides
an effective solution to apply MCE approach to acoustic model
adaptation with sparse data. The proposed MCELR approach is
studied and compared with the maximum likelihood linear
regression (MLLR) based model adaptation. Experiments on
large vocabulary speech recognition tasks are performed.
Experimenta results indicate that the proposed MCELR model
adaptation can lead to significant speech recognition
performance improvement and its performance advantage over
the MLLR based approach is observed even when the amount of
adaptation datais sparse.

1. INTRODUCTION

Minimum classification error (MCE) based discriminative
approach has various applications in speech recognition [1,2].
Instead of assuming that the parametric model used in speech
recognition characterizes the true distribution of the data, MCE
approach is a discriminant function based pattern classification
method, and for a given family of discriminant function, optimal
classifier/recognizer design involves finding a set of parameters
which minimize the empirical recognition error rate. The reason
of taking a discriminant function based approach to classifier
design is due mainly to the fact that we lack complete knowledge
of the form of the data distribution and that training data are
always inadequate, particularly in dealing with speech and
language problems.

However, minimizing the functional form of the empirical
error rate function in MCE based classifier design often presents
a great challenge. The most common optimization method used
in MCE is based on the generalized probability descent (GPD)
agorithm that iteratively adapts the model parameters at an
utterance-by-utterance basis [2]. However, there are three major
issues in GPD based approach despite its popularity. Firstly, the
selection of the step size vector ¢ is empirical and has a critical
impact on the model performance. In order to improve the model
performance, ¢ needs to be carefully determined. Moreover,
different model parameter requires different step size in MCE
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training. Secondly, the sample-by-sample based parameter
adjustments in GPD approach are noisy and the performance of
the model fluctuates. Although the performance advantage of
MCE is observed in many applications, there is no theoretical
guarantee that the selected stopping point in MCE training gives
a better model. This is because the benefit of the GPD based
optimization is from an asymptotic process. Thirdly, the
computational efficiency of GPD algorithm is plagued by the
requirement of doing repeated sample-by-sample adjustments.

These issues become critical and acute for MCE based
model adaptation when only a small amount of adaptation dataiis
available. If structured adaptation, such as linear regression
based model adaptation [3], is considered, there is a huge
number of parameters to adapt. These parameters are not real
model parameters, but parameters from the "hyperstructure” (e.g.
regression matrices). This makes the selection of the step size
vector ¢ even more difficult. In [4], the GPD agorithm was
directly applied to adapt the linear regression matrices. In this
paper, we present a new string model based MCE linear
regression (MCELR) approach and derive its growth transform
based solution for acoustic model adaptation in large vocabulary
speech recognition. The contributions of this paper are:

e A "super" string model based MCELR adaptation approach
is described. It utilizes the error correlation between
adaptation utterances.

e A growth transform based solution is derived for super
string model based MCELR model adaptation.

e The dgorithmic effects of the proposed MCELR agorithm
are studied and compared with the conventional MLLR
based model adaptation. Performance advantage of MCELR
is observed on the standard large vocabulary recognition
task with a small amount of adaptation data.

2. A FRAMEWORK OF MCE MODEL TRAINING

In string model based M CE approach [2], the classification error
count function is represented at the string level model matching
and embedded in a smooth loss function

1 ®

Lc(xi/\) = 1+e—dc(><,/\) ’

where d. (X , A) is the string level misclassification measure.
When N-best competing string models are used,
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where W, is the correct transcript lexica word string, and
{W |W, #W,,i=1,...,N} istheset of N most confusing word
strings that are different from W,. These confusion word strings
are typically identified by the recognizer through a N-best
search. In conventional MCE training, the GPD agorithm is
applied to minimize the expected loss over al training
utterances. Each utterance is considered as an independent
observation, assuming that there is no correlation between errors
in different utterances.

It is known that recognition errors often exhibit a strong
correlation with phonetic contexts and are correlated across
different utterances. When the amount of adaptation data is
small, such correlation should be utilized in model adaptation.
To improve the effect of MCE based model adaptation, we
introduce a "super string" based string model. The super string X
in our approach is constructed by concatenating the limited
adaptation utterances into one string. The string model based
MCE training becomes to minimize the loss function L,(X,A) of
the super string X, with the added constraint that the word
sequence content of each utterance is aligned within its original
start/end boundaries.

In the "super" string model framework, we consider

P(A) =1- L (X,A). ©)
It is obvious that minimizing L/X,A) is equivalent to
maximizing
N7 £ (X, W,;A\) 4

P(A) = — .
[5 fOCWIA)TT + NYTE (X WA

If we set the smooth factor # = 1, it smplifiesto

N OF (X, W,; A 5
Y F(XWA)+NOF (X W;A)
i=1

However, P(A) is a complicated ratio of two positive functions.
We sketch the main steps that are used to derive the growth
transform solution for optimizing P(A) in MCE based model
adaptation.

P(A) is the ratio of )., where
G(A) = N OF (X, W,;\) s (6)
H(A) = 3 F(XWSA) + NI (X W A) @)

Then afunction can be constructed as follows
F(A;A)=G(A)-P(A)H(A)+D , ®

with D a suitable positive constant. The important property of
F(A;AY) is that, if F(A;A) > F(AAT), then P(A) > P(A') [5].
Furthermore, if F(A;A’) can be represented in the form

F(AN) = z_[h()(,s,/\)d)(, C)

increasing the value of F(A;A’) can be achieved by maximizing

> [hix.s.A)logh(x,s,A)dy, (19
S x
where h (y , s, A) is a positive function [6]. For super string
model based M CE adaptation,
h(x.sA) = [F(A) +d(S)]CF (x [sA) (11
and
(A=
0 N . NS 0
F(SW)S FOAWEA) ~ T (AWA)S F(SW)

1)(()() = L
gkl 2 FOMGA) + N OF (r Wi ) E

where 1,(X) is the indicator function of X, and s is the hidden
Gaussian component sequence. |f we only adapt mean vectors
and covariance matrices of the acoustic model and denote A as
those parameters, (W, S) is independent from A. Moreover, we
havef (X |9 f(W,9) =f(X|W, 9 f(W, 9 =f(X W,s) for
arbitrary word string W. The constant D in (8) is determined by
D= st(s), where d(s) for each s is chosen to guarantee that

h (y, s A) is positive.
Since [F(/\')+d(s)] is not a function of A, the growth
transform is the one that maximizes

V(N = Y [INA) +d@1 (xISA)leg f (x IsAdy. 12

Divide through (12) by f (X, W, ; A’), for continuous density
HMMs, the maximizing objective function is as follows

UA) = ;[Ay(tym)]|09 f(x s =mA) 13

2 dEm[f(x s =mA)logf(x |s =mA)dy.,
Lm Xt
where

N T3 £ (W AD (L MW,) - p(t, mW,)]
Ay(t,m) = ' !

i=1
> FOCWEA) + N OF (X W A)
i=1

withy (t, m, W) = p (s=m|X, W, A’) is the a posterior probability
of occupying the Gaussian component m at time t, given data X
and a referenced word string W, and d'(t, m) is computed by
d't,m) = 3 d(s)/ f (X, Wi \)-

s,5=m
3.MCELR MODEL ADAPTATION

In the linear regression based model adaptation framework,
usually al Gaussian components of the acoustic modd are
clustered into several regression classes through aregression tree
[3]. For class m with R Gaussian components {4, | r = 1,...,R},
atransform matrix W, is estimated. Then for the m-th Gaussian
component N(uqy , Xny), the adapted mean vector is given by:

/]n‘r =Wm |-_‘fn‘r (14)
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where &y = [1, par(2),... um(D)]" is the extended vector of the
D-dimensional mean vector u,. In MLLR based model
adaptation, W, is estimated based on the maximum likelihood
(ML) criterion. In MCELR based approach, the MCE criterion is
used for W, estimation.

In this paper, we adopt the same notation used to derive
MLLR in [3] for the purpose of easy comparison. For
simplification, the subscript of class m is omitted in following
equations.

Denoting h(x,r) = (x—W¢,)" = (x-W¢, ), and ignoring
terms that are irrdevant to maximization, the maximizing
objective function has the following form

QW)= S [antnh(x,n)]

(15)
+ sz'(t,r)_[f()(t [s =r,ADh(x,,r)dy,.
t r Xt
Set 9Q(W)/oW =0, and notice that
[, fOals =riA)dy =1 [ xfOxls =nA)dy, =4
W can be solved through the following equation,
TS Ay(t,r)x +D T
Z : [Z y(t,1)% + D 416, (16)

=3[5Oyt + D5 WEST,
r t
where p = z d'(t,r) - Follows the notation in [3], we denote
r t !
VO =[5 Ayt + D]
2

Z=3 2y AYLDxX + D]

When diagonal covariance matrices are used, VO is a diagonal
matrix, and W can be computed on arow-by-row basis,

WiT =gt EZT , (17)

where w; and Z are the i-th rows of W and Z, respectively. GV is
a (D+1)x(D+1) matrix that is computed by g = Z;,-_(_r)d(r)
1.9 Ll

19’

with DO =& &7, where the individual matrix elements at the "

row and the K" column of G”, V0 and D" are denoted by
ggi)k,vj(fk) and dj(fk) , respectively.

4. EXPERIMENTS

4.1. Experimental condition

The speech recognition experiments were performed on the Wall
Street Journal (WSJ) speaker adaptation task using the official
1993 Spoke 3 speaker adaptation and evaluation data (ET_S3).
The data set includes 10 speakers, each of which provides 40
utterances for adaptation and other 40~43 utterances for testing.
The standard 5K trigram language model specified for the
evaluation was used. The speech feature vector is MFCC based
with 39 dimensions (c, Ac, AAc, e, Ae, AAe). The speaker
independent (SI) model was trained on the standard speaker
independent WSJ SI-84 portion of the training corpus.
Crossword triphones were used as the recognition units and the

baseline SI model was obtained by using phonetic decision tree
based state tying. For the baseline system, an average word error
rate (WER) of 27.5% was achieved over these 10 speakers.

In our experiments, 1-best competing string model based
M CE approach was implemented. Correspondingly, Ay(t, r) is

FOGW Ay (61, W) — )y (61 W) (18)

VD = WA + (KW A)

where W, is the most confusing string that is different from W,.

In the 1-best competing string model MCE approach, a
large portion of W, and W, are the same, except those words that
correspond to recognition errors. Furthermore, referring to (18),
many data are “neutralized” except those “ effective data’ which
correspond to the confusing error words between W, and W,.
Correspondingly, in MCELR, the criterion to estimate a
transform matrix for a regression class should be based on the
adequate “effective data’ that are accumulated in that class.

The constant D, in (16) is a factor to control the “learning
rate”. As suggested in MMI training [7], for the r-th Gaussian
mixture, D, is given as

D, =7+E Dz y(t,r,W,)- (19)

where E is agloba smoothing factor to scale the value of D,, and
r isasmall constant to make sure D, is dways positive. In our
experiments, r was aways set to 2, and the WSJ 20K trigram
language model was used to generate the competitor W.

4.2. Experimental result

Two sets of experiments were conducted to evaluate the
proposed MCELR based model adaptation method. Firstly, the
MLLR based mean adaptation was performed. Secondly, by
using the MLLR adapted model as the seed model, a series of
MCELR adaptation experiments were performed. In our
experiments, the sample count threshold of generating a
transform matrix in MLLR was set to 1000, and the “effective
data” amount threshold of generating a transform matrix in
MCELR was set to 100. In adaptation, the silence model was not
adapted. Furthermore, we found that a better performance could
be obtained if the value of f (X, W,; A') is decreased slightly by a
factor F, where f (X, Wy A) =f (X, W;; A)F, and F was set to
1.003 in the following experiments.

4.2.1. Objective function optimization
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Fig. 1. The vaue of log[P(A)] vs. iteration number, given
different value of the global smoothing factor E.
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The change in MCE objective function P(A) as adaptation
iteration proceeds is shown in Figure 1. The effects of the global
smoothing factor with E = 2, E = 4, and E = 6 are evaluated. The
monotone increasing of the value of P(A) indicates that the
decreasing of empirical loss function L. (X,A) of MCE is
achieved as adaptation iteration continues. Furthermore,
compared with alarger value of E, asmaller value of E leadsto a
smaller constant D, and results to afaster “learning rate”.

4.2.2. MCELR performances on training and testing set

The proposed MCELR approach is evauated on both of
adaptation and testing data. The 20K language model is used in
decoding the adaptation utterances. It is desirable to update the
competitor when the model is updated. In experiments, a new
competitor is generated after every threeiterations.

The recognition performances on adaptation and testing
data are shown in Figure 2 and 3, respectively. As we expect, the
recognition error rate on the training adaptation data set drops
sharply, with a relative error reduction around 60%. However,
this dramatic improvement is not maintained on the testing set,
on which a 6.2% error reduction is achieved after 12 iterations,
when E = 6. The effects of the globa smoothing factor E on
recognition performance are also evaluated. As illustrated in
Figure 3, asmall value of E = 2, which corresponds to the fastest
learning rate, leads to an unstable performance on testing set. On
the other hand, athough the best result is obtained by using a
larger value of E = 6, much more iterations are needed for it.
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Fig. 2, recognition error rate vs. iteration number on adaptation
set, given different value of the global smoothing factor E.

iteration number

Fig. 3, recognition error rate vs. iteration number on testing set,
given different value of the global smoothing factor E.

4.2.3.Comparison of MCELR and MLLR approaches
Table 1 summarizes the performance comparison of the MLLR

based model adaptation and the MCELR approach, with respect
to the amount of adaptation data (in adaptation utterance). In al
MCELR adaptation experiments, the seed models are the
corresponding MLLR adapted models. The global smoothing
factor E is set to 6 for tests with 10 and 20 adaptation utterances,
and set to 4 for tests with 30 and 40 utterances. The iteration
number of MCELR based model adaptation is fixed to 6.
Compared with MLLR approach, MCELR based adaptation can
further reduce the recognition WER by 5.0% ~ 7.7%, relatively.

TABLE I, Recognition performance (WER %) comparison of the
MLLR based adaptation and the M CEL R based adaptation.

# Adpt. utter. 10 20 30 40
MLLR 19.31 16.88 15.56 14.74
MCELR 17.82 15.75 14.78 13.87

Err. reduction -71.7% -6.7% -5.0% -5.9%

5. SUMMARY

In this paper, a "super" string model based minimum
classification error linear regresson (MCELR) adaptation
approach was described. It was shown that the error rate
minimization in the proposed approach could be formulated into
maximizing a specia ratio of two positive functions.
Furthermore, a growth transform based estimation of the MCE
linear regression transform matrix has been derived. It provides
an effective solution to apply MCE approach to acoustic model
adaptation with sparse data. The implementation details were
studied and experimental results on the 1993 Spoke 3 test set of
the WSJ task show that significant performance advantage over
the MLLR based approach was achieved even when the amount
of adaptation datais sparse.
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