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ABSTRACT

We present an optimal clustering algorithm for grouping multi-
variate normal distributions into clusters using the divergence, a
symmetric, information-theoretic distortion measure based on the
Kullback-Liebler distance. Optimal solutions for normal distribu-
tions are shown to be obtained by solving a set of Riccati matrix
equations and the optimal centroids are found by aternating the
mean and covariance matrix intermediate solutions. The cluster-
ing performance of the new algorithm compared favorably against
the conventional, non-optimal clustering solutions of sample mean
and sample covariance in its overall rate-distortion and even dis-
tributions of samples across clusters. The resultant clusters were
further tested on unsupervised adaptation of HMM parametersin
aframework of Structured Maximum A Posterior Linear Regres-
sion (SMAPLR). The Wall Street Journal database was used for the
adaptation experiment. The recognition performance with respect
to the word error rate, was significantly improved from a non-
optimal centroid (sample mean and covariance) of 32.6% to 27.6%
and 27.5% for the diagonal and full covariance matrix cases, re-
spectively.

1. INTRODUCTION

The need to cluster multivariate normal distributions is often en-
countered when working with normal mixture density based Hid-
den Markov Models (HMMs) in automatic speech recognition
(ASR). An indirect way to cluster distributions is frequently used
when tied HMMs are constructed. Usually the clustering is per-
formed in an agglomerative or divisive hierarchical method to-
gether with a likelihood based decision rule [1, 2]. A different
approach that doesn’t involve raw observations is to split the pa-
rameters of an HMM (i.e., Gaussian Kernels) directly into clusters
or a hierarchical tree where each node forms its own cluster and
theresultant clusters are then used in model adaptation algorithms.
These algorithms include, e.g., Maximum Likelihood Linear Re-
gression (MLLR)[3], Structural MAP adaptation (SMAP)[4] and
Cluster Adaptive Training (CAT)[5]. All these approaches perform
well when alogical partitioning of the HMM parametersis carried
out, resulting in aricher and more structural mapping in the HMM
parameter space.

Most model adaptation algorithms focus only on the mixture
component mean vectors of the underlying HMMs. Thisis due to
the fact that the state transition probabilities and mixture weights
have little to no effect on the overall performance, and that the
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covariance matrices of the mixture components are numerically
unstable to adapt and a robust estimate is difficult to obtain when
the adaptation data is scarce. This simplifications enables usto fo-
cus on the clustering of the mixture components only. Ideally, we
should obtain clusters of mixture components whose mean vectors
are structured in such a way that any observed perturbations in a
small subset should lead us to infer the adaptation direction and
magnitude of the unobserved mean vectors using a simple model,
eg., an afine transformation as in the MLLR case. A simple
but useful conjecture is that “similar” mixture components (i.e.,
Gaussian kernels) should always be grouped into the same cluster,
where the term “similar” is open for an intuitively appealing and
mathematically tractable definition.

One similarity measure between mixture components that has
been strongly advocated and commonly used e.g., [4, 6] is the di-
vergence measure [7]. This measure is defined for measuring the
"distance" or "distortion" between two given probability density
functions, f and g, as

d(f,g)=/flog§+/glog§ )

Note that the divergence does not fulfill the triangle inequality, and
so it is not a distance in the sense of being a metric as defined in
topology [8]. It does however fit the notion of a distortion measure
asitisdefined in[9].

If f and g are multivariate normal distributions, as is com-
monly used for modeling a continuous HMM, equation (1) hasthe
aclosed form solution as follows,

d(f,g)
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where p and X are the corresponding mean vectors and covari-
ance matrices, respectively. In [6] a comparative study was per-
formed on the use of the divergence, Euclidean distance and Bhat-
tacharyya distance as distance measuresin the construction of a hi-
erarchy of clusters of HMM mixture components. Theresult of the
study shows that the divergence measure gave the best adaptation
results. In thiswork we will concentrate on how to find an optimal
clustering centroid of multivariate normal distributions using the
divergence as the sole similarity measure, as well as investigating
its application to HMM adaptation.
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2. THE EXPECTATION CENTROID

Although the divergence measure has been proposed to measure
the similarity between multivariate normal densities used in acon-
text of k-means clustering e.g., [10], no solution has been pub-
lished, to the authors' best knowledge, of the the true centroid of
a cluster of multivariate Gaussian densities. The centroid we are
interested in is a multivariate normal density that minimizes the
total distortionsin acluster. Formally, a centroid c is defined as,

¢ = argmin Z d(zn,c), (3)
e n=1
where N is the number of cluster members, and z,, is the nth
cluster member.
In [4] a centroid which we shall refer as the expectation cen-
troid is defined as a density whose mean and covariance are the
sample mean and the sample covariance,
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where x,, refersto arandom variable distributed according to the
nth cluster member. Later experiments show that this centroid
has good convergence properties and reasonable clustering perfor-
mance. However, it is not the optimal centroid which minimizes
the total divergence of a cluster. Next we will present our solution
of the optimal centroid.

3. THE OPTIMAL CENTROID

The centroid we need to find is a multivariate normal distribution
which solves the following minimization problem,

{p.,Xc} = argmin Zd fery fn). (6)

pl, = —

Here d(-, -) is the Kullback-Liebler divergence measure, f./ isa
multivariate normal distribution having mean vector p!, and co-
variance matrix .., and f,, refersto the nth member in the cluster.

The mean vector of the centroid, .., can be found simply by
setting the gradient of the object function in equation (6) with re-
spect to p, to zero. Thisyields the following solution

Zz +3.! ] 7

The procedure to find the covariance matrix of the centroid is
abit more involved. Let usfirst state the following useful lemma
from functional analysis [11]:

N —1
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Lemma 3.1 If A is an element in a unital Banach algeb®?awith
[|A|l < 1,thenI — A € GL(2), the set of all elements having an

inverse, and
=> A" 8
i=0

For our purpose it is sufficient to note that the vector space of all
finitedimensional n x n matricesisan unital Banach algebraunder
matrix multiplication and the operator norm.

Let 3. + eRR” be aperturbation of the optimal covariance
matrix, where R is any real matrix. The inverse is then given by
lemma 3.1, provided that ¢ is chosen sufficiently small:
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By replacing the covariance matrix 3 in equation (6) with a per-
turbed one, we can now compute the Géteaux variation (see [12])
and set it to zero. In other words, we need to solve the following
equations:

6 N
52| D dfefa) =0, (10)
€ e=0n=1
for 3., to obtain the optimal centroid.
It turns out that solving equation (10) is equivalent to solving
the following Riccati matrix equation,

A +BX +XB*—XCX =0, (11)
where
N
A = D (e —p) B, — 1)+, (12)
n=1
B = o, (13)
M
c = > =, (14)
n=1
X = 3. (15)

Equation (11) can be written in a block matrix form as,

B A X
[I_X][C—B*][I]zo' (16)
Let us denote the square block matrix as M. We now apply

the following theorem to find the optimal covariance matrix [13]:

Theorem 3.1 Assume thaf, C are positive semidefinite Hermi-
tian, and letvy, ..., vy be eigenvectors dVI corresponding to
the eigenvaluea., ..., \s. Further, if v is an eigenvector oM,

we will write
[ w }
v = 5
W

whereu andw are the upper and lower halves ofrespectively.

Then, ifA1,..., As has positive real parts anfw1, ..., wy] is
nonsingular, we have that
X:[ul,...,ud][wl,...,wd]_l, a7)

is a solution to equatiolil6) as well as positive semidefinite.
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For a proof of the existence of at least d positive eigenvalues,
Aty ..., Ag, as well as the non-singularity of [wi,...,wy], we
refer to [14]. In the same reference it is aso shown that the objec-
tive function is convex in both p, and X., hence guaranteeing a
global minimum.

In the specia case where all the distributions have a diagonal
covariance matrix we can constrain the covariance of the centroid
to be diagonal, yielding the following simple expressions for the
ith elements of ., and X respectively,
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Finally it should be noted that the solutions for p, and X, are
dependent on each other. No joint solution is readily obtainable,
and we compute the p, and X, aternatively, starting from the
expectation centroid.

4. EXPERIMENTAL RESULTS

In this section we present two sets of experimental results. The
first experiment is clustering performance where we compare the
true centroids, in both forms of full and diagonal covariance ma-
trix, with the expectation centroid defined in equations (4) and (5).
In the second experiment we use the true centroid and the expec-
tation centroid to build regression trees and compare the their per-
formance in SMAPLR adaptation [15].

Themultivariate normal distributions used in these experiments
are from HMMs that is trained using the speech data from 84
speakers in the Wall Street Journal Corpus. The model contains
37,786 mixture components — all in the form of multivariate nor-
mal distribution with diagonal covariance matrix. The model is
constructed using feature vectors of 12 mel-frequency cepstral co-
efficients together with the normalized log energy plusthe A- and
A% -coefficients, 39 features altogether.

4.1. Clustering Performance

Wewill now use the clustering algorithm with the divergence mea-
sure to group HMM mixture components. The set of mixture com-
ponents was to be grouped into 10 clusters. To account for the fact
that theinitial conditions change the final clustering performance,
we repeated the experiment five times using different initializa-
tions while the same initializations were used for all the three cen-
troid finding procedures.

The results can be seen in figure 1. As expected, the two
optimal centroids clearly outperforms the expectation centroid in
terms of the total divergence, with the full covariance centroid be-
ing dlightly better than the diagonally constrained centroid. Also
the expectation based centroid exhibits a non-monotonic decrease
of distortion, which is to be expected as the computation of a new
set of centroids is not guaranteed to lower the total distortions, as
opposed to the true centroids.

Thetrue centroids also yield amore evenly distributed clusters
of the mixture components, which can be seen from the example
in figure 2. A more formal evaluation of the flatness is given in
table 1, where the Shannon entropy is used to measure the flathess
of the cluster distribution for the five different experiments.
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Fig. 1. Convergence performance of three different centroids. The
figure shows the total divergence on the y-axis versus the itera-
tion number on z-axis. The dashed lines at the top corresponds to
the expectation centroids, the drawn lines, in the middle group, to
the optimal diagonally constrained centroids, and the dash-dotted
lines, which give the lowest overall distortion, to the optimal cen-
troids with full covariances.
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Fig. 2. Distribution of mixture components across clusters. Left
bar corresponds to expectation centroid, middle to diagonally con-
strained centroid and right to full covariance centroid.

| Expectation | Diagonal | Full ]

3.0363 3.2766 3.2972
2.9978 3.3028 3.2964
3.0114 3.2782 3.2332
3.0136 3.2599 3.2791
3.0002 3.2724 3.2768
3.0119 3.2780 3.2765

Table 1. The flatness of the mixture components distribution
across clusters, as measured by the entropy of the normalized bin
counts. Five different experiments are presented as well as the av-
erage over these experiments.
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4.2. SMAPLR Adaptation

The clustering performance results are definitely encouraging, but
it is yet to be confirmed that the optimal centroids can improve
the recognition performance, say, in a model adaptation task. The
three centroids from the previous clustering experiments were used
to build three sets of hierarchica clusterings of HMM mixture
components in a form of regression tree. These trees were then
used with the SMAPLR approach on the Wall Street Journal Spoke
11l task, consisting of ten non-native speakers of American En-
glish. The original, speaker independent model is the same as the
onethat we used for our clustering experimentsin the previous sec-
tion. The un-adapted model gives us the baseline performance of
aword error rate (WER) of 29.2%. Only one adaptation utterance
was used to adapt the model in this adaptation experiment. Ear-
lier experiment has shown that we need to be very conservative in
adapting the HMM parameters when data is scarce, as the perfor-
mance can degrade significantly when apoor mapping is obtained.
Here we try to be more more ambitious such that we do not end up
using only one global transformation, something that would render
the experiment meaningless. Just like the clustering experiments
we repeated the tree building procedure five times using different
initializations. The results are presented in table 2.

| Expectation | Diagonal | Full |
31.6 27.1 27.9
334 275 27.2
34.7 275 27.9
31.7 27.8 26.7
317 27.9 271.7
32.6 27.6 275

Table 2. The word error rate (WER) on the Wall Street Journal
Spoke 111 task for three different centroids based hierarchical clus-
tering. Resultsfor five separate experiments are presented, as well
as their averages. The baseline WER of the speaker independent
model is 29.2%.

The results clearly indicates that the true centroids based hi-
erarchical tree clusterings are better suited for adaptation than the
trees built using expectation centroids. While it is still difficult to
pinpoint the reason why the adaptation performance of of the ex-
pectation centroid based trees is inferior to that of the trees built
using the optimal centroids, we do feel that a more consistent
minimization of the total distortion and the true optimal centroids
thus derived should provide more compact and homogeneous clus-
ters in the information theoretic sense, hence leading to better re-
gression trees for adaptation. However, whether the improvement
should be attributed to a more uniform cluster size, or to a more
homogeneous clustering is yet to be confirmed via further study.

5. CONCLUSION

In this work we present a novel clustering agorithm for finding
the optimal centroids of multivariate normal distributions using the
Kullback-Liebler divergence measure. It is shown that the cluster-
ings obtained using the optimal centroid yield significantly lower
overall distortion than the centroid based on the sample mean and
the sample covariance found in the literature. We also observe that
the multivariate normal distributions are more evenly distributed
across resultant clusters. The optimal centroids were further used

to construct hierachical regression trees and tested for adapting
HMM parameters. The adaptation result shows a clear improve-
ment in WER when compared to trees built with the non-optimal
centroids.
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