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ABSTRACT creased, for a small amount of adaptation data, the improve-
ment in recognition rate is limited. The difficulties associ-

Reggrdless .Of the distribution of the adapta_tlon data in ated with the determination of the prior density and the slow
the testing environment, model-based adaptation methods

: : . . convergence with large number of hidden Markov model
that have so far been reported in various literature incorpo- o .
. S . . (HMM) parameters are also characteristics of this approach.
rate the adaptation data undiscriminatingly in reducing the | . L
. I . X Indirect model adaptation is an approach based on parame-
mismatch between the training and testing environments.

. . "ter transformation[3][4], which does not guarantee the con-
When the amount of data is small and the parameter tying is .
. . . ) vergence to the speaker dependent system. In this approach,
extensive, adaptation based on outlier data can be detrimen;,
. " the number of free parameters are small and thus the model
tal to the performance of the recognizer. The distribution

. e . __can be adapted to the testing environment (or new speaker)
of the adaptation data plays a critical role on the adaptation_ . )
erformance. In order to maximally imorove the recodni- with only a small amount of data. However, this approach
P e : . y imp 9 4oes not take the full advantage of a large amount of data.
tionratein the.testmg envwonm_ent using only a S.ma" UM 14 overcome some of the demerits of each approach, recent
ber of adaptation data, supervised weighted training is AP~ 1 ethods have combined the two [5][6][7] so thatalarée oy
plied to the structural maximum posterior(SMAP) algo-

. . rovement for a small amount of data and an approximate
rithm. We evaluate the performance of the proposed We'ghteconver ence to the MLE for a larae amount of data can
SMAP (WSMAP) and SMAP on TIDIGITS corpus. The 9 A9 .
be achieved. One such method is the structural maximum
proposed WSMAP has been found to perform better for a : . S :
X : . —a posterior(SMAP) algorithm which is a transformation-
small amount of data. The general idea of incorporating

o : ; : based maximuna posteriori (MAP) algorithm. With all
the dlstr_lbuuon o_f the adaptation data is applicable to other its good qualities, the performance of SMAP is highly de-
adaptation algorithms.

pendent on the adaptation data, and thus an outlier in the
test environment can be detrimental to its performance. To
1. INTRODUCTION reduce this dependency on the adaptation data, supervised

weighted training is applied. Here each adaptation token is
The performance of an automatic speech recognizer (ASR)weighted by its confidence measure.

degrades when there is a mismatch between the trainingand  The organization of the paper is as follows. Section 2

testing environments. To compensate for this mismatch, describes weighted adaptation. Section 3 describes the pro-

many methods have been proposed. These can be classposed WSMAP. Section 4 discusses some experimental re-
fied into two categories : feature compensation [1][8] which sults. Section 5 finally concludes.

compensates for the observation in the process of feature
extraction, and model adaptation[2]-[7] which estimates the
new model parameters using only a small amount of adap-

tation data. This paper focuses on model adaptation. The objective of a speaker adaptation system is to maxi-

Early model- adaptation methods can be categorized as el—ma"y improve its recognition rate using only a small num-

ther direct or indirect adaptation. Direct adaptation is basedber of adaptation data and to converge to the MLE as the
on Bayesian estimation[2]. Although it will approximately 5ot of data increases. In order to achieve this, various

converge to the maximum likelihood estimator (MLE)- speakgf, nstormation-based MAP algorithms have been proposed
dependent system- as the amount of adaptation data is |n[2]_[7]_ In all these methods, the effect of each adapta-

This work was supported by grant No. R01-2000-000-00259-0(2002) tion data on the recognition rate in the testing environment
from the Korea Science & Engineering Foundation. is magnified with a decreasing amount of adaptation data.

2. WEIGHTED ADAPTATION
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Adaptation based on an outlier can degrade the performancéhe HMM, and an observation sequence or an adaptation
of the recognizer. token respectively, it can be easily seen thgt\, \') >

Fig. 1 shows that adaptation based on an outlierdata  Q(X, \) givesP(X|)\) > P(X|\). For N observations, in-
of the testing environment can give rise to an adapted modelequality (1) can be represented by the following expression
Agdapt that can be very different from the modgl*! of given by Arslan[9]:
the testing environment, and the adaptation based on data
xo that is representative of the testing environment can give Z lo
rise to an adapted modaf:¢°r* that is close to\y*’. For N
this reason, each adaptation token is given a weight that in-
dicates its likelihood in the testing environment. Rather than
discarding outliers, all tokens are incorporated in the adap-
tation procedure so that the adapted model can converge t
the MLE of testing environment as the number of data in-

!/
— . 3
XM )2 Q0 ) - QN 3)
Both the previous and updated weights of it adapta-
tion tokenw, = w(X,,\) andw, = w(X,,\) are in-
corporated into the inequality g|ven in (3). This gives the
?nequallty shown by

creases as long as the weight satisfies certain constraints. Z w’, P x wy P(X,|\)
N X,
-~ rain " . X |A/)
8 A : Model of training environment
g 4 — Iog + = Iog—
% ijf : Model of testing environment Z X |/\) Z
% Z,‘;?”M : Adapted model ofﬂi;amusing X > Q(A, )\ ) - Q(>H A) ) (4)
é Z:dapm : Adapted model ofli;gmusing X,

From the above formulation, wheg PO Iog <0
then P(X|\) > P(X|\) for Q(\, N) > Q(A, /\) "In this
paper, we do not consider this sufficient condition for the
convergence property for each confidence weight. Through
the experiments, we will show that the weight in equation
(6) satisfies the convergence property.

Acoustic Space [

2.2. Confidence weight
Fig. 1. Influence of adaptation data on adaptation model o ) o )
The likelihood ratio, which is a measure of the confidence

The degree of mismatch of the data is represented by the™" each token, can be formulated as

confidence measure of each data. The confidence measure G _ P(XD|\) 5
of each token is used to weight each token[9]. The weight- no = (HN (X(i)M,))l/(N_l) (5)
. . . j=1,j%#i n 1\
ing places preference on data that is close to the training '
environment. whereX¥) is thenth training token of theth word. There
are many possible ways to formulate a measure based on
2.1. Convergence with confidence weighting the above confidence measure. In this paper, we employ the

following weight to the token:
In the proposed adaptation procedure, each adaptation token

is weighted by its confidence measure. In order to verify w) = a+exp(—[In(P(X|\i) = In(P(XT[x;)) +1) (6)
whether the expectation- maximization (EM) algorithm can | where \; is the model with the largest likelihood given
be applied to the weighted adaptation data, the following ar- training tokenx . In the above equatiom sets a floor on
gument is considered. From the following relationship[10] he minimum p055|ble weight on each training token, and

P(X|\) controls the level of adaptation data emphasis. In our exper-
log BOXIN >QAN) = QNN (1) iments we used a value of 0.2 far a value of 1 fory. The
(X]A) above expression is similar to the measure used in Arslan[9]
where auxiliary function in obtaining the MLE [10] and Juang[11].
QM N) = ZP (X, S|\) logP(X,S|N)  (2) 3. WEIGHTED STRUCTURAL BAYES
(XM) T ADAPTATION(WSMAP)

and), ), S andX are the previous HMM parameter, the up- As mentioned above, early direct adaptation algorithms show
dated HMM parameter, a particular state sequence througHittle improvement in recognition rate for a small amount
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of data. And early indirect adaptation algorithm cannot 3.2.2. MAP estimator using Hierarchical Tree Structure
guarantee the convergence to speaker-dependent model fo e . .

a large amount of data. To eliminate these degradations, arz(j5 nte of .thet@fhcfutlaes OT using g/l AbI_T_;.basefdts daptatlontls the
algorithm using the hierarchical tree structure was proposed etermination ot tha prior probabilities o In€ parameters.
by Shinoda[7]. Thea priori m.ust 'represent the character|§t|cs of.HMM pa-
The SMAP aigorithm presents an effective method for de- rameters, which it may not. However using a hierarchical

ciding thea priori probability and estimating the mismatch tre_e _structure_ can aIIewgte the _d|ff|cu|ty .Of de_term_ma_ng
between groups of Gaussian mixtures in HMM priori probability. That is, a child node inherits priori
' probability of a parent node and makes use of it as a param-

eter for the child node’a priori probability[7].

The kth-level MAP estimaté iy, 7j;,) can be calculated
To incorporate the benefits of indirect model adaptation wherdrom the(k —1)th-node estimate§/;, 1), jx—1)) as shown
the amount of adaptation data is small, parameters are clusby
tered into nodes and then the adaptation is applied. For con-

3.1. Tree Structure

. Tyog + i1

tinuous density HMM, Gaussian mixtures are used as the v = , (10)
parameters. To make up the tree of the Gaussian mixtures, Ui+ 7

we defined distance between two Gaussian components as

the sum of Kullback-Leibler divergence and used K-means Me—1 + Tk + Tl’fﬂ Oy, — 1) (O — D1)

algorithm in a top-down manner, as shown by Shinoda[7].

3.2. Weighted Structural Bayes Adaptation

3.2.1. Normalization of Gaussian distributions

Nk = ) (11)

T+ &k
wherel' is defined a&, = Y- w, 32, > meq,, Ynmt
and (v, 1) is a ML estimate of(vy, 7). 7 and¢ are
hyperparameters to define the prior distributions of HMM

For adaptation using a tree structure, we generate the norParameters[7]. In this paper, these hyperparameters are not
malized observation vectors and find the normalized Gaus-varied in all tree layer. In this equatiory = 0 andrjo = I

sian distribution using the normalized vectors. Ttieob-
servationz,,; of X,, is transformed into the vectay,,,,; for
each mixture componenmt and timet with the parameter
0., of mixturem, as shown by

2;1/2 (Tnt — fim) (7)

Then the mismatch between the training environntgmx(
and the testing environme#tj can be found using the dis-
tribution of Y um = {ynm1, -, Ynmr }- When the mismatch
does not existy; follows the distribution of,,, and the nor-
malized observation vectdr,,,,, follows the standard nor-
mal distributionN (Y|, 0, I). When the mismatch does ex-
ist, Y,,., follows the distribution ofN (Y |v, ), wherev and

Ynmt

are assumed. Finally theth MAP estimates of the Gaus-
sian parameters,, andy.,, at each leaf (assume tree struc-
ture hasK levels) can be calculated frofwy, 77 ) by the
following

fim

E m

,L_Lm + (S’Iﬂ)l/zﬁK
S (Sh2)"
wherey,,, andf,, are the covariance and the mean for the
mixture componend,, (-) respectively.

12)
(13)

4. EXPERIMENTAL RESULTS AND DISCUSSION

We used TIDIGITS[12] to show the performance of WSMAP

N represgnt the shiftand r_otation of mixture components d“eproposed in this paper. We trained a model for women with
to the mismatch, respectively. Therefore, we can representy 354 ytterances and tested it with 1232 men’s utterances.

the overall mismatch in a node using the paraméten).
For a set of\/;, Gaussian mixture components

Gr =191, -, 9m, ---» g0, } at thekth node, the MLE of the
(7, M) using the weightv,, is given by

N T My,
Enzlwn Zt:l Emkzl’ynmtynmt

N T My,
En:lwnztzl Emzllynmt

Uk , (8)

R Erjy:lwnzzzlzﬁfillynmt(ynmt - ﬂ)(ynmt - ﬁ)t

Nk
N T My,
Zn:l wnzt:l Emzl'ynmt

(9)

where N is the number of adaptation data ang,.:
P(my = m|X,, A).

The feature was 13th MFCC calculated using 30ms frame
with 10ms shift window. The recognition rate of men’s test
using women’s model was 80.38% and that of men'’s test
using men’s model was 98.46%.

The adaptation result using TREE[7], SMAP and WSMAP
are presented in and Table 1. As the number of adapta-
tion data increased, the recognition rate of both SMAP and
WSMAP converged to 98.46% which is the recognition rate
of the speaker dependent system. Although both SMAP and
WSMAP converged approximately to the same limit, Ta-
ble 1 shows that WSMAP performed on average 3-5% bet-
ter than SMAP. This can be attributed to WSMAP’s efficient
use of the adaptation data. The above result was based on
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