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ABSTRACT

Regardless of the distribution of the adaptation data in
the testing environment, model-based adaptation methods
that have so far been reported in various literature incorpo-
rate the adaptation data undiscriminatingly in reducing the
mismatch between the training and testing environments.
When the amount of data is small and the parameter tying is
extensive, adaptation based on outlier data can be detrimen-
tal to the performance of the recognizer. The distribution
of the adaptation data plays a critical role on the adaptation
performance. In order to maximally improve the recogni-
tion rate in the testing environment using only a small num-
ber of adaptation data, supervised weighted training is ap-
plied to the structural maximuma posterior(SMAP) algo-
rithm. We evaluate the performance of the proposed weighted
SMAP (WSMAP) and SMAP on TIDIGITS corpus. The
proposed WSMAP has been found to perform better for a
small amount of data. The general idea of incorporating
the distribution of the adaptation data is applicable to other
adaptation algorithms.

1. INTRODUCTION

The performance of an automatic speech recognizer (ASR)
degrades when there is a mismatch between the training and
testing environments. To compensate for this mismatch,
many methods have been proposed. These can be classi-
fied into two categories : feature compensation [1][8] which
compensates for the observation in the process of feature
extraction, and model adaptation[2]-[7] which estimates the
new model parameters using only a small amount of adap-
tation data. This paper focuses on model adaptation.
Early model- adaptation methods can be categorized as ei-
ther direct or indirect adaptation. Direct adaptation is based
on Bayesian estimation[2]. Although it will approximately
converge to the maximum likelihood estimator (MLE)- speaker
dependent system- as the amount of adaptation data is in-
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creased, for a small amount of adaptation data, the improve-
ment in recognition rate is limited. The difficulties associ-
ated with the determination of the prior density and the slow
convergence with large number of hidden Markov model
(HMM) parameters are also characteristics of this approach.
Indirect model adaptation is an approach based on parame-
ter transformation[3][4], which does not guarantee the con-
vergence to the speaker dependent system. In this approach,
the number of free parameters are small and thus the model
can be adapted to the testing environment (or new speaker)
with only a small amount of data. However, this approach
does not take the full advantage of a large amount of data.
To overcome some of the demerits of each approach, recent
methods have combined the two [5][6][7] so that a large im-
provement for a small amount of data and an approximate
convergence to the MLE for a large amount of data can
be achieved. One such method is the structural maximum
a posterior(SMAP) algorithm which is a transformation-
based maximuma posteriori (MAP) algorithm. With all
its good qualities, the performance of SMAP is highly de-
pendent on the adaptation data, and thus an outlier in the
test environment can be detrimental to its performance. To
reduce this dependency on the adaptation data, supervised
weighted training is applied. Here each adaptation token is
weighted by its confidence measure.

The organization of the paper is as follows. Section 2
describes weighted adaptation. Section 3 describes the pro-
posed WSMAP. Section 4 discusses some experimental re-
sults. Section 5 finally concludes.

2. WEIGHTED ADAPTATION

The objective of a speaker adaptation system is to maxi-
mally improve its recognition rate using only a small num-
ber of adaptation data and to converge to the MLE as the
amount of data increases. In order to achieve this, various
transformation-based MAP algorithms have been proposed
[2]-[7]. In all these methods, the effect of each adapta-
tion data on the recognition rate in the testing environment
is magnified with a decreasing amount of adaptation data.
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Adaptation based on an outlier can degrade the performance
of the recognizer.

Fig. 1 shows that adaptation based on an outlier datax1

of the testing environment can give rise to an adapted model
λadapt

x1
that can be very different from the modelλtest

A of
the testing environment, and the adaptation based on data
x2 that is representative of the testing environment can give
rise to an adapted modelλadapt

x2
that is close toλtest

A . For
this reason, each adaptation token is given a weight that in-
dicates its likelihood in the testing environment. Rather than
discarding outliers, all tokens are incorporated in the adap-
tation procedure so that the adapted model can converge to
the MLE of testing environment as the number of data in-
creases as long as the weight satisfies certain constraints.

Fig. 1. Influence of adaptation data on adaptation model

The degree of mismatch of the data is represented by the
confidence measure of each data. The confidence measure
of each token is used to weight each token[9]. The weight-
ing places preference on data that is close to the training
environment.

2.1. Convergence with confidence weighting

In the proposed adaptation procedure, each adaptation token
is weighted by its confidence measure. In order to verify
whether the expectation- maximization (EM) algorithm can
be applied to the weighted adaptation data, the following ar-
gument is considered. From the following relationship[10]

log
P (X|λ′)
P (X|λ)

≥ Q(λ, λ′)−Q(λ, λ) , (1)

where auxiliary function in obtaining the MLE [10]

Q(λ, λ′) =
1

P (X|λ)

∑

allS

P (X, S|λ) logP (X, S|λ′) (2)

andλ, λ′, S andX are the previous HMM parameter, the up-
dated HMM parameter, a particular state sequence through

the HMM, and an observation sequence or an adaptation
token respectively, it can be easily seen thatQ(λ, λ′) ≥
Q(λ, λ) givesP (X|λ′) > P (X|λ). ForN observations, in-
equality (1) can be represented by the following expression
given by Arslan[9]:

1
N

N∑
r=1

log
P (Xr|λ′)
P (Xr|λ)

≥ Q(λ, λ′)−Q(λ, λ) . (3)

Both the previous and updated weights of thenth adapta-
tion tokenwn = w(Xn, λ) andw′n = w(Xn, λ′) are in-
corporated into the inequality given in (3). This gives the
inequality shown by

1
N

N∑
r=1

log
w′rP (Xr|λ′)
wrP (Xr|λ)

=
1
N

N∑
r=1

log
P (Xr|λ′)
P (Xr|λ)

+
1
N

N∑
r=1

log
w′r
wr

≥ Q(λ, λ′)−Q(λ, λ) . (4)

From the above formulation, when1N
∑N

r=1 logw′r
wr

≤ 0
thenP (X|λ′) > P (X|λ) for Q(λ, λ′) > Q(λ, λ). In this
paper, we do not consider this sufficient condition for the
convergence property for each confidence weight. Through
the experiments, we will show that the weight in equation
(6) satisfies the convergence property.

2.2. Confidence weight

The likelihood ratio, which is a measure of the confidence
on each token, can be formulated as

C(i)
n =

P (X(i)
n |λi)

(
∏N

j=1,j 6=i P (X(i)
n |λj))1/(N−1)

(5)

whereX(i)
n is thenth training token of theith word. There

are many possible ways to formulate a measure based on
the above confidence measure. In this paper, we employ the
following weight to the token:

w(i)
n = α + exp(−|ln(P (X(i)

n |λi))− ln(P (X(i)
n |λj)) + γ|) (6)

, whereλj is the model with the largest likelihood given
training tokenX(i)

n . In the above equation,α sets a floor on
the minimum possible weight on each training token, andγ
controls the level of adaptation data emphasis. In our exper-
iments we used a value of 0.2 forα, a value of 1 forγ. The
above expression is similar to the measure used in Arslan[9]
and Juang[11].

3. WEIGHTED STRUCTURAL BAYES
ADAPTATION(WSMAP)

As mentioned above, early direct adaptation algorithms show
little improvement in recognition rate for a small amount
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of data. And early indirect adaptation algorithm cannot
guarantee the convergence to speaker-dependent model for
a large amount of data. To eliminate these degradations, an
algorithm using the hierarchical tree structure was proposed
by Shinoda[7].
The SMAP algorithm presents an effective method for de-
ciding thea priori probability and estimating the mismatch
between groups of Gaussian mixtures in HMM.

3.1. Tree Structure

To incorporate the benefits of indirect model adaptation when
the amount of adaptation data is small, parameters are clus-
tered into nodes and then the adaptation is applied. For con-
tinuous density HMM, Gaussian mixtures are used as the
parameters. To make up the tree of the Gaussian mixtures,
we defined distance between two Gaussian components as
the sum of Kullback-Leibler divergence and used K-means
algorithm in a top-down manner, as shown by Shinoda[7].

3.2. Weighted Structural Bayes Adaptation

3.2.1. Normalization of Gaussian distributions

For adaptation using a tree structure, we generate the nor-
malized observation vectors and find the normalized Gaus-
sian distribution using the normalized vectors. Thetth ob-
servationxnt of Xn is transformed into the vectorynmt for
each mixture componentm and timet with the parameter
θm of mixturem, as shown by

ynmt = Σ−1/2
m (xnt − µm) (7)

Then the mismatch between the training environment(θm)
and the testing environment(θl) can be found using the dis-
tribution ofYnm = {ynm1, ..., ynmT }. When the mismatch
does not exist,xt follows the distribution ofθm and the nor-
malized observation vectorYnm follows the standard nor-
mal distributionN(Y |,~0, I). When the mismatch does ex-
ist, Ynm follows the distribution ofN(Y |ν, η), whereν and
η represent the shift and rotation of mixture components due
to the mismatch, respectively. Therefore, we can represent
the overall mismatch in a node using the parameter(ν, η).
For a set ofMk Gaussian mixture components
Gk = {g1, ..., gm, ..., gMk

} at thekth node, the MLE of the
(ν̄k, η̄k) using the weightwn is given by

ν̄k =
ΣN

n=1wnΣT
t=1Σ

Mk
m=1γnmtynmt

ΣN
n=1wnΣT

t=1Σ
Mk
m=1γnmt

, (8)

η̄k =
ΣN

n=1wnΣT
t=1Σ

Mk
m=1γnmt(ynmt − ν̄)(ynmt − ν̄)t

ΣN
n=1wnΣT

t=1Σ
Mk
m=1γnmt

(9)

whereN is the number of adaptation data andγnmt =
P (mt = m|Xn, λ).

3.2.2. MAP estimator using Hierarchical Tree Structure

One of the difficulties of using MAP-based adaptation is the
determination of thea priori probabilities of the parameters.
Thea priori must represent the characteristics of HMM pa-
rameters, which it may not. However using a hierarchical
tree structure can alleviate the difficulty of determininga
priori probability. That is, a child node inheritsa priori
probability of a parent node and makes use of it as a param-
eter for the child node’sa priori probability[7].

Thekth-level MAP estimate(ν̂k, η̂k) can be calculated
from the(k−1)th-node estimates(ν̂(k−1), η̂(k−1)) as shown
by

ν̂k =
Γkν̃k + τkν̂k−1

Γk + τk
, (10)

η̂k =
η̂k−1 + Γkη̃k + τkΓk

τk+Γk
(ν̃k − ν̂k−1)t(ν̃k − ν̂k−1)

Γk + ξk
, (11)

whereΓk is defined asΓk =
∑N

n=1 wn

∑T
t=1

∑
m∈Gk

γnmt

and (ν̃k, η̃k) is a ML estimate of(νk, ηk). τk and ξk are
hyperparameters to define the prior distributions of HMM
parameters[7]. In this paper, these hyperparameters are not
varied in all tree layer. In this equation,̂ν0 = ~0 andη̂0 = I
are assumed. Finally themth MAP estimates of the Gaus-
sian parameterŝµm andΣ̂m at each leaf (assume tree struc-
ture hasK levels) can be calculated from(ν̂K , η̂K) by the
following

µ̂m = µ̄m + (Σ̄m)1/2ν̂K (12)

Σ̂m = Σ̄1/2
m η̂K(Σ̄1/2

m )t. (13)

whereΣ̄m andµ̄m are the covariance and the mean for the
mixture componentgm(·) respectively.

4. EXPERIMENTAL RESULTS AND DISCUSSION

We used TIDIGITS[12] to show the performance of WSMAP
proposed in this paper. We trained a model for women with
1254 utterances and tested it with 1232 men’s utterances.
The feature was 13th MFCC calculated using 30ms frame
with 10ms shift window. The recognition rate of men’s test
using women’s model was 80.38% and that of men’s test
using men’s model was 98.46%.
The adaptation result using TREE[7], SMAP and WSMAP
are presented in and Table 1. As the number of adapta-
tion data increased, the recognition rate of both SMAP and
WSMAP converged to 98.46% which is the recognition rate
of the speaker dependent system. Although both SMAP and
WSMAP converged approximately to the same limit, Ta-
ble 1 shows that WSMAP performed on average 3-5% bet-
ter than SMAP. This can be attributed to WSMAP’s efficient
use of the adaptation data. The above result was based on
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Table 1. Recognition rate obtained with supervised adapta-
tion done with TREE, SMAP and WSMAP

Number of Adaptation Data TREE SMAP WSMAP
Baseline 80.38 80.38 80.38

20 83.57 85.08 86.04
40 86.68 90.27 91.54
90 91.39 94.49 94.90
300 91.39 97.29 97.21

a four level and three node tree structure. However, the au-
thors have supervised weighted training to be effective for
different tree structures.

5. CONCLUSION

The performance of the proposed WSMAP algorithm is found
to be better than the SMAP for a small amount of adapta-
tion data, and as the amount of data is increased both meth-
ods converged to speaker dependent model. This shows the
effectiveness of the supervised weighted training in adapta-
tion. The general idea of incorporating the distribution of
the adaptation data is applicable to other adaptation algo-
rithms.
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